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Zusammenfassung 

„Unter Oecologie verstehen wir die gesammte Wissenschaft von den Beziehungen des Organismus zur 

umgebenden Aussenwelt, wohin wir im weiteren Sinne alle „Existenz-Bedingungen“ rechnen können. 

Diese sind theils organischer, theils anorganischer Natur; sowohl diese als jene sind, wie wir vorher 

gezeigt haben, von der grössten Bedeutung für die Form der Organismen, weil sie dieselbe zwingen, 

sich ihnen anzupassen.“ 

So lautet die erste Definition des Begriffes Ökologie aus dem Jahr 1866, in dem von Ernst Haeckel 

verfassten Werk „Generelle Morphologie der Organismen“. Noch heute, mehr als 150 Jahre später, 

hat diese Definition nicht an Bedeutung verloren. Im Gegenteil, die Forschung der letzten Jahrzehnte 

befasst sich zunehmend mit einem ganzheitlichen biologischen Ansatz. 

Der Einbezug anthropogener Einflüsse nimmt dabei eine immer wichtigere Rolle ein. Vor allem die 

Betrachtung negativer Effekte aufgrund eingetragener Chemikalien in Oberflächengewässer auf 

Organismen und somit auf das gesamte Ökosystem gewinnt dabei stetig an Bedeutung. Daher wird 

dieser Aspekt auch in der vorliegenden Dissertation aufgegriffen. Um das Verständnis von 

Auswirkungen chemischer Belastungen zu erweitern, wurde in dieser Arbeit untersucht, ob und wie 

bestimmte Stoffe die Reproduktion von Flusskrebsen – eine Gruppe, die für das Ökosystem aufgrund 

ihrer Ernährungsweise und ihres Einflusses auf die Gewässerstruktur einen besonderen Stellenwert 

innehat – beeinflussen. 

Zu diesem Zweck wurde zunächst in Laboruntersuchungen der Einfluss zweier Chemikalien auf die 

Gonadenreifung und die Embryonalentwicklung der einheimischen, gefährdeten Edelkrebse (Astacus 

astacus) und der nicht endemischen, sich parthenogenetisch vermehrenden Marmorkrebse 

(Procambarus virginalis) untersucht. Die Stoffe Diclofenac und Terbuthylazin wurden hierfür aufgrund 

ihres hohen Vorkommens in Oberflächengewässern sowie ihrer bekannten Toxizität ausgewählt. 

Diclofenac ist ein Arzneimittel, das bei Schmerzen und Entzündungen sowohl human- als auch 

veterinärmedizinische Anwendung findet, wohingegen Terbuthylazin ein Vorauflauf-Herbizid darstellt, 

welches vornehmlich im Sorghum-, Zitrus-, Mais-, Wein- und Apfelanbau verwendet wird. Die 

Ergebnisse zeigen eine Beeinträchtigung von Edelkrebsen in allen getesteten Konzentrationen, die so 

gewählt wurden, dass sowohl real gemessene Konzentrationen in Oberflächengewässern als auch weit 

größere Dosen beider Stoffe abgedeckt wurden. Vor allem subletale Effekte, wie histopathologische 

Veränderungen und Größendefizite der Nachkommen, treten hier auf. Marmorkrebse hingegen zeigen 

gegenüber Schadstoffen eine höhere Resistenz. Während die durch Diclofenac ausgelösten Effekte auf 

die Embryonalentwicklung noch vergleichbar mit denen der Edelkrebse sind, zeigt sich bei den übrigen 

Ergebnissen, dass die Reproduktion von Marmorkrebsen erst bei Konzentrationen, die bereits ein 
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Vielfaches über den Stoffmengen liegen, die in Oberflächengewässern nachgewiesen werden können, 

beeinträchtigt wird. Die Ergebnisse der Laboruntersuchungen zeigen also, dass die Reproduktion und 

damit auch die Populationsdynamik von Edelkrebsen durch aktuell in den Oberflächengewässern 

bestehende Stoffkonzentrationen negativ beeinflusst wird. Zusätzlich konnte gezeigt werden, dass die 

Nutzung des Marmorkrebses als Modellorganismus für die Effektgrenzenbestimmung einzelner Stoffe 

nur bedingt möglich ist. 

Da jedoch beide Stoffe in der Umwelt in der Regel nicht als alleinige Verunreinigung auftreten, sondern 

meist mit einer Reihe anderer Stoffe durch Drainagen der Landwirtschaft oder Auslässe von 

Kläranlagen in Oberflächengewässer eingetragen werden, wurden auch Auswirkungen real 

existierender Mischkontamination im Feld untersucht. Zu diesem Zweck wurden eitragende 

Edelkrebsweibchen verschieden stark belastetem Oberflächengewässer ausgesetzt. Die 

Verschmutzung, die punktuell durch einen Kläranlagenabfluss eingeleitet wird, hatte immense 

Auswirkungen auf die Embryonalentwicklung der Tiere. Sowohl letale, als auch subletale Effekte 

konnten nachgewiesen werden. 

Insgesamt zeigt diese Arbeit, dass Konzentrationen von Umweltchemikalien, die momentan in 

Gewässern Europas und der Welt gemessen werden, die Reproduktion und damit die Arterhaltung der 

gefährdeten Edelkrebse negativ beeinflussen. Als Konsequenz sollte daraus folgen, dass die 

Kontamination von Gewässern stärker überwacht und die Einleitung chemischer Stoffe effektiver 

verhindert werden muss. 
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Summary 

"By ecology, we understand the entire science of the organism's relations to the surrounding outside 

world, which include all "conditions of existence" in a broader sense. These are partly organic, partly 

inorganic; both are, as we have previously shown, of the greatest importance for the form of 

organisms, because they force it to adapt to them.” 

This is the first definition of the term ecology from 1866, written down in the work "Generelle 

Morphologie der Organismen" (General Morphology of Organisms) by Ernst Haeckel. Even today, more 

than 150 years later, this definition has not lost its meaning. On the contrary, research has increasingly 

focused on a holistic biological approach in recent decades. 

The inclusion of anthropogenic impacts is a growing field of study. In particular, the consideration of 

negative effects on organisms and, thus, on the entire ecosystem due to chemicals introduced into 

surface waters has become more and more important. Therefore, this aspect is focused on in this 

dissertation. In order to expand the understanding of the effects of chemical pollution, this thesis 

investigates whether and how certain substances affect the reproduction of crayfish, a group that is of 

particular importance for the ecosystem due to their diet and their impact on the structure of the 

water body. 

To this end, the influence of two chemicals on the gonadal maturation and embryonic development of 

the endangered, native noble crayfish (Astacus astacus) and the non-native parthenogenetically 

reproducing marbled crayfish (Procambarus virginalis) was investigated in laboratory studies. The 

substances Diclofenac and Terbuthylazine were selected for this study because of their high incidence 

in surface water bodies and their known toxicity. Diclofenac is a drug that is used to treat pain and 

inflammation in both human and veterinary medicine, while Terbuthylazine is a pre-emergence 

herbicide used primarily in the cultivation of sorghum, citrus fruits, corn, grapes and apples. The results 

show the impairment of noble crayfish reproduction in all tested concentrations, which were chosen 

to cover both, actually measured concentrations in surface waters and much higher doses of both 

substances. Especially sublethal effects such as histopathological changes and size deficits of the 

offspring occurred. In contrast, marbled crayfish show a higher resistance to the pollutants. While the 

effects induced by Diclofenac are still comparable to those on noble crayfish, the other results show 

that the reproduction of marbled crayfish is only impaired at concentrations that are multiple times 

higher than the amounts of substances that can actually be detected in surface waters. Therefore, the 

results of the laboratory investigations show that the reproduction and also the population dynamics 

of noble crayfish are impaired by currently existing substance concentrations in surface waters. In 



 Summary 

 

4 
 

addition, it was shown that the use of marbled crayfish as model organisms for the determination of 

effective concentrations of individual substances is only possible to a limited extent. 

Since both substances do not usually occur in the environment as single contaminants but are usually 

introduced into surface waters together with a number of other chemicals through agricultural drains 

or outlets of sewage treatment plants, the effects of real mixed contamination were also investigated. 

For this purpose, egg-carrying female noble crayfish were exposed to different levels of contamination 

in surface waters in a field study. The pollution, which was discharged through a sewage treatment 

plant outlet, had immense effects on the embryonic development of the animals. Both lethal and sub-

lethal effects could be demonstrated. 

Overall, this work shows that concentrations of environmental chemicals, currently measured in 

surface waters of Europe and beyond, influence the reproduction and, thus, the conservation of 

endangered noble crayfish. As a consequence, the contamination of water bodies should be controlled 

more closely, and the discharge of chemical substances should be prevented more effectively. 
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1 Overall introduction 

The ecology of freshwater ecosystems is influenced by human actions in various ways: structural 

changes resulting in an unnatural flow regime, the intervention in flora and fauna due to overfishing 

and stocking of non-indigenous species and the discharging of chemically contaminated wastewater 

leading to a disruption of ecological networks. The aim of the European water framework directive 

(WFD) is the improvement of deficient structures of water bodies. The species protection law and the 

regulation (EU) No. 1143/2014 on the prevention and management of the introduction and spread of 

invasive alien species aims to protect the endemic flora and fauna. The handling of problems regarding 

chemicals induced to water bodies is more difficult to address. Apart from an upper limit of all toxic 

substances in drinking waters of 0.1 µg/L, only regulations and recommendations of usage and 

cleaning of water introduced in surface water bodies are available.  

At least 223 chemicals are frequently detected in European freshwater bodies (Malaj et al., 2014), each 

of which can show different effects on the present species. The vast majority of chemicals originate 

from agricultural or pharmaceutical substances (Murray et al., 2010). While agricultural substances, 

intentionally used as fertilisers or plant protection products, occur in surface waters in peaks during 

the application period, pharmaceuticals are used and introduced throughout the whole year. 

Pharmaceuticals can represent the entire range of human and veterinarian medicine. Both chemical 

groups can lead to the formally intended effects, side effects and totally unexpected effects in non-

target organisms.  

The Impact of substances on the ecosystem is highest, when organisms that have an extraordinary 

influence on their surroundings are affected. Freshwater crayfish are of exceptional importance for 

their environment. They affect nearly every trophic level of their habitat and influence their structural 

environment due to their burrowing activity. Therefore, these largest invertebrates of freshwater 

bodies are called “keystone species“ and “ecosystem engineers“ (Weinländer and Füreder, 2016). 

Consequently, the habitat directive protects all native freshwater crayfish species in Europe (European 

Commission, 2000). Nevertheless, these species are highly endangered. Invasive species, the crayfish 

plague (Aphanomyces astaci), structural stress and chemical load cause population decline (Chucholl, 

2011). Especially the influences of presumed toxic chemicals on sensitive life stages affect population 

recruitment and dynamics. Therefore, freshwater crayfish and their sensitive life stages during 

reproduction are the focus of this investigation, in combination with a selection of chemicals, which 

will be described in the following chapters. The native noble crayfish Astacus astacus is exceptionally 

well-suited for this study due to its preferred habitat, which is often found in surface waters influenced 

by wastewater plants and agriculture (Skurdal, J. and Taugbøl, T., 2002). In addition to this species, the 

non-endemic marbled crayfish Procambarus virginalis was investigated. Its reproduction cycle, which 
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is described in more detail in the following chapters, enables the researcher to carry out investigations 

on toxicological effects much safer and faster than for other freshwater crayfish. If the observed effects 

are comparable to those of other crayfish species, the marbled crayfish could serve as a model 

organism and be of great importance in future crayfish studies. 

Due to their known toxic effects and the regular detection of these substances, Terbuthylazine (TBA) 

and Diclofenac (DCF) are of special concern in toxicological investigations. Therefore, these two 

chemicals were used in laboratory experiments. Additionally, a field experiment was conducted to 

evaluate the effects a real sewage treatment plant (STP) output can have on freshwater crayfish. 

1.1 Organisms 

1.1.1 Astacus astacus 

The European noble crayfish (Astacus astacus, Linnaeus 1758, Figure 1.1) is an arthropod of the class 

Crustacea, the subclass Malacostraca and the order Decapoda and is a member of the family Astacidae. 

Other members of this family are Astacus leptodactylus (Eschscholz 1823), Austropotamobius pallipes 

(Lereboulette 1858), Austropotamobius torrentium (Schrank 1803) and Astacus pachypus (Rathke 

1837). Astacus shows three subspecies: A. astacus, A. balcanicus and A. colchicu. Male noble crayfish 

can reach a length of more than 15 cm without claws and a weight of 250 g. Female body and claw size 

is smaller and they reach up to 15 cm and 200 g (Hager, 2003). As in all freshwater crayfish, the body 

of noble crayfish consists of a cephalothorax and a pleon. Dorsal colour is dark brown, but can vary to 

a brighter beige; in some cases, even blue or red animals occur (Füreder, 2009).  
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Figure 1.1: Adult male Astacus astacus. Picture: Daniel Konn-Vetterlein. 

The carapace is smooth and does not show thorns or humps, but it has lateral granular tubercles. As 

distinguishing features, the noble crayfish has two thorns or humps behind the cervical furrow and two 

postorbital ridges (Füreder and Machino, 2002). Claws of noble crayfish are bigger in male specimens. 

They are heavily grained and dorsally of the same colour as the carapace. The colour of the ventral side 

of the body and of the end of the pereiopods is red to red-brown (Füreder and Machino, 2002).  

The individuals can live up to 15 years and sexual maturity is reached at a size of 60 to 70 mm for male 

individuals. Females reach sexual maturity at 62 to 85 mm. In outdoor populations, these sizes are 

reached between the third and fifth year after hatching (Skurdal, J. and Taugbøl, T., 2002). Mating 

takes place between September and November as temperatures decrease (Ackerfors, 1999). As in 

most crayfish species, male noble crayfish attach spermatophores between the second and fourth 

pleopods and the telson of females. During oviposition, the eggs get in contact with the 

spermatophores for fertilisation and are attached to the pleopods for the rest of the embryonic 

development until the first moulting of juvenile crayfish (Skurdal, J. and Taugbøl, T., 2002). Embryonic 

development will last for 1900 degree days. In Germany, this is equivalent to a hatching in May to June 

(Burk, 2004). Noble crayfish are omnivorous. Their main food source consists of semiaquatic 

vegetation, benthic invertebrates and detritus. Further, zooplankton, tadpoles and small fishes can be 

a food resource (Olsson et al., 2008). 

The noble crayfish is commonly known as a species requiring extraordinarily clear and cold water to 

survive and reproduce. Therefore, its presence is regarded as an indicator of good water parameters. 
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Low pH-values, however, can cause a lack of calcium carbonate and pose a problem for the synthesis 

of chitin. Furthermore, temperatures over 25 °C are critical for the survival this species (Skurdal, J. and 

Taugbøl, T., 2002). The assumption about the crayfish’s distribution in clear and cold water can be 

explained by the occurrence of the crayfish plague, which does not appear in these kind of water 

bodies. The oomycete, the causative agent of the crayfish plague, is a key threat to crayfish biodiversity 

worldwide (Svoboda et al., 2017). North American crayfish species, which have co-evolved with A. 

astaci, are considered to be chronic but largely asymptomatic carriers. They combat A. astaci through 

consistent production of prophenoloxidase, which activates a cascade resulting in melanization of 

hyphae that prevents their invasion into host soft tissues (Persson et al., 1987). European, Japanese 

and Australian freshwater crayfish species like Astacus astacus ,however, have been found to be highly 

susceptible to the crayfish plague fungus. Mortalities occur in percentages of 100 % for these species 

after a fungal attack (Unestam, 1969). The mycelia grow rapidly through the cuticle and reach the 

internal body cavity, which results in crayfish death within 6–10 days (Unestam and Weiss, 1970). 

Outbreaks of the crayfish plague have eradicated many populations of native crayfish all over Europe, 

including Astacus astacus populations (Kozubíková-Balcarová et al., 2014). Therefore, the crayfish 

plague in combination with an unnatural water flow regime caused by human interference in water 

structure as well as chemical loads in surface waters are considered the main reasons for the 

decreasing numbers of A. astacus populations (Svobodová et al., 2012). As a result, this species is on 

the IUCN Red List of Threatened Species and is also protected through the habitat directive (Edsman 

et al., 2015). 

1.1.2 Procambarus virginalis 

The marbled crayfish Procambarus virginalis (Lyko 2017, Figure 1.2) occurred for the first time in 1995. 

Its origin is unknown, but this species developed most likely through breeding for aquaristic 

distribution (Vogt, 2018). Due to its appealing appearance and the special parthenogenetic 

reproduction method, the animals were popular in pet shops, and this species was the most demanded 

crayfish in northern America in 2015 (Faulkes, 2015). In 2010, (Martin et al.) found the origin of this 

species in the slough crayfish Procambarus fallax (Hagen, 1870), which belongs to the family of 

Cambaridae. The triploid set of chromosomes of marbled crayfish was caused by a fusion of a not-

reduced, diploid ovum with a haploid sperm cell or the fusion of a normal ovum with two haploid 

spermatophores, respectively. Analyses showed that all gametes of P. virginalis have their origin in P. 

fallax. Therefore, P. virginalis is no hybrid (Vogt, 2015), but an autopolyploid, which often results in 

parthenogenetic reproduction just like in the example of the marbled crayfish (Martin et al., 2015). 

The parthenogenetic reproduction of this species is apomictic, which means that there is no reduction 

division of the egg cells of the marbled crayfish. Thus, the genome of the offspring of apomictic animals 

is identical with their mother’s genome, so that there are only female animals known (Simon et al., 
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2003). Thanks to their parthenogenetic reproduction, this species is able to lay eggs every 8 to 9 weeks 

under optimal conditions (Vogt, 2010). 

Adult marbled crayfish reach lengths of 4–8 cm without claws and a weight of 1.5–15 g. Some 

individuals can even reach up to 12 cm and 25 g (Vogt, 2011). The lifespan of this species of two to 

four years is noticeably lower than for noble crayfish. First reproduction normally starts between 150 

to 250 days after hatching (Vogt, 2010). The main characteristic of this species is the smooth, marbled 

carapace, which is the origin of its trivial name. There are several thorns behind the cervical furrow. 

The claws of this species, which are normally smaller than half of the carapace, also show the 

characteristic marbling. They are lightly grained on the dorsal side, and a clear spike is visible on the 

root of the two parts of the claw. They also have a pair of postorbital ridges. 

These animals have lower demands on their environment than noble crayfish. The preferred 

temperature lays between 20 and 25 °C (Seitz et al., 2005). However, they are able to outlast 

temperatures below 8 and over 30 °C, but without being able to reproduce (Hunter et al., 2011). 

The extraordinary reproduction strategy of these animals is advantageous for researchers. The steady 

supply of offspring and the genetic conformity makes them a suitable model organism (Vogt, 2010). 

On the downside, this fast reproduction results in uncontrollable populations in outdoor water bodies 

if one animal escapes or is released into nature. Additionally, this species is known as a carrier of the 

crayfish plague, which results in a high-risk potential for endemic crayfish species, especially in 

combination with the potentially high reproduction rate and the food and habitat competition. In many 

countries, including Germany, wild and stable populations of marbled crayfish are known to date 

(Chucholl et al., 2012). 

 

Figure 1.2: Adult Procambarus virginalis with eggs. Picture: Jan Laurenz. 
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1.2 Substances 

1.2.1 Terbuthylazine 

Terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4diamine, Figure 1.3) is a chloro-s-

triazine characterized by ethylamino and tert-butylamino side chains. It is a replacement of the 

herbicide Atrazine (Figure 1.3), which was banned in Germany and Italy in 1991 (Sassine et al., 2017) 

and in the remaining countries of the European Union in 2004 (Fingler et al., 2017) due to the 

widespread contamination of ground and surface waters as well as its associated endocrine disrupting 

activity. TBA is one of the most frequently detected pesticides in natural waters (Tasca et al., 2018). 

Concentrations of up to 34.0 µg/L were detected in surface waters (Herrero-Hernández et al., 2017). 

Not only high concentrations and persistence (average half-life of 22 days), but also the deethylated 

metabolite desethylterbuthylazine occurs, which has been found to be one of the most abundant polar 

plant protection metabolites in EU aquifers (Loos et al., 2010). 

 

 

 

 

 

TBA is used as a pre-emergence herbicide to inhibit the photosynthesis of the target organisms, such 

as annual dicotyledonous weeds or the cockspur Echinochloa crus-galli. 

Approximately 60 % of the combined area in corn production in Europe receives TBA. It is used in more 

than 45 countries and remains a key weed control tool in crops such as corn, sorghum, pea, bean, 

lupin, grape, pome fruit, citrus and vine (Heri et al., 2008).  

We can find toxicological effects of TBA a wide range of LOECs (lowest observed effective 

concentrations). The approval report for successor T, for instance, describes median effective 

concentrations for Pseudokirchneriella subcapitata at 12 µg/L, for Lemna gibba at 13.3 µg/L and for 

Daphnia magna at 19 µg/L. Bókony et al. (2020) showed effects starting at 0.3 µg/L for Rana 

dalmatina. Velisek et al. (2015) showed LOEC of TBA on common carp at 2.9 µg/L. For freshwater 

crayfish, there are no direct data for Terbuthylazine, but a derivate, terbuthylazine-2-hydroxy, was 

tested. Koutnik et al. (2017) showed effects on weight of juvenile marbled crayfish (Procambarus 

virginalis) at 75 mg/L. Stara et al. (2016) showed effects of terbuthylazine-desethyl on the histology of 

red swamp crayfish (Prombarus clarkii) from 2.9 µg/L. The log KOW (octanol/water partition 

coefficient) of 3.4 leads to a higher possibility of bioaccumulation over time (Barbieri et al., 2019) and, 

Figure 1.3: Structural formula of Atrazine (left) and Terbuthylazine (right). 
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therefore, even higher impacts of this pesticide on organisms over time and as well for animals in 

higher trophic levels. 

Investigations that reflect the actual chemical load of surface waters are of severe importance for 

crayfish populations. The pollution of water bodies is composed of several different chemicals (Kienzler 

et al., 2014). Velisek et al. (2017) showed a higher risk of mixtures of triazine derivates on crayfish than 

the single components. Therefore, investigations regarding effects of chemical mixtures including 

triazines are also of great importance to improve the understanding of effects caused by these 

substances.  

1.2.2 Diclofenac 

Diclofenac (2-(2,6-dichloranilino) phenylacetic acid, Figure 1.4) is one of the most used 

pharmaceuticals in the world. It is a human and veterinary drug and approximately 940 tons are used 

worldwide per year (Zhang et al., 2008). In Europe, 179.8 tons per year were sold in 1999 (Ferrari et 

al., 2003), whereas most was applied in Germany with 82 tons in 2009 (Bergmann et al., 2011). The 

non-steroidal anti-inflammatory drug (NSAID) reduces inflammation or is applied as a pain reliever in 

certain conditions (Hunter et al., 2011). It decreases the production of thromboxanes and 

prostaglandins (Satoh et al., 2015) to reduce pain, inflammation and fever in target organisms. Similar 

to Terbuthylazine, Diclofenac has a high log KOW of 4.05. Therefore, the bioaccumulation over time or 

trophic levels is even higher than for TBA. 

 

 

 

 

 

 

DCF is relatively stable in the environment, but similar to other NSAIDs it is sensitive to photolysis 

(Epold et al., 2012). Therefore, the missing UV-clarification in sewage treatment plants leads to 

relatively high concentrations in surface and ground waters. Bouju et al. (2016) showed that only 40 % 

of Diclofenac can be removed in 18 days in wastewater treatment plants. It has been found in 

concentrations of up to 29.8 µg/L in surface waters (Lin et al., 2008) and is, with 3.996 positively 

detected MECs (measured environmental concentrations), the most detected substance of the 

chemicals on the watch list of the database “Pharmaceuticals in the environment” of the UBA (German 

Environment Agency). It is considered a “contaminant of emerging concern” and was included in the 

previous watch list of EU Decision 2015/495 (Li et al., 2019; Lonappan et al., 2016; Sousa et al., 2018) 

Figure 1.4: Structural formula of Diclofenac. 
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to gather sufficient monitoring information on surface waters (Sathishkumar et al., 2020). Further, this 

prevalent anti-inflammatory drug was detected in 55 countries (Dusi et al., 2019). The photolytic 

degradation of DCF in combination with less light, lower temperature and water chemistry is leading 

to higher concentrations in surface waters during winter and, therefore, over the reproduction or 

embryonic development time of freshwater crayfish. 

The effects of DCF on prostaglandin expression can also show a wide range of effects on non-target 

organisms. Prostaglandin influences not only symptoms of pain and fever, but is also essential for ion-

transport, oogenesis, spermatogenesis, sperm maturation and the immune defense (Rossitto et al., 

2015; Rowley et al., 2005). Eades and Waring (2010) showed effects of DCF on osmoregulation of 

Carcinus maenas at concentrations of 10–100 ng/L. Median lethal concentrations (LC50) for regularly 

used organisms for admission procedures like Daphnia magna (LC50
48h = 60.7 mg/L) and Moina 

macrocopa (LC50
48h = 142,6 mg/L) were much higher than actual concentrations in surface waters (Lee 

et al., 2011). Nevertheless, the same study showed that DCF influences time and ratio of hatching of 

Oryzias latipes. Even more alarming, DCF reduces reproduction success of the second generation to 

zero even though only the first generation was exposed to 10 mg/L DCF. Du et al. (2016) investigated 

the influences of DCF on the total number of broods per female and the total egg production number 

per female (Figure 1.5). The median effective concentration (EC50) for these parameters were 

0.94 mg/L and 0.52 mg/L. In conclusion, the concentration peak during the reproduction and 

embryonic development, paired with the high influence of DCF on these sensitive live stages, shows 

the importance of investigations dealing with these effects.  
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Figure 1.5: Adverse effects of Diclofenac on the reproduction of D. magna with endpoints including the total 
number of broods per female and the total egg production number per female at 21 days. Significant differences 
(p\0.05) among the treatments for the total number of carapaces per adult and body length were indicated by 
different letters (a, b, c, d, e, f and a`, b`, c`, d`, e`, f`), respectively (changed after Du et al. (2016). 

1.3 Aim of study 

The available literature data reveal the lack of information on influences of chemicals on the vast 

majority of non-target organisms. This study will help to fill some of these gaps and can initiate new 

approaches to questions regarding toxicology on freshwater crayfish. Therefore, two main questions 

are examined: 

1: Are reproduction stages of freshwater crayfish influenced by the chemicals TBA and DCF or by the 

mixture of chemicals with in the sewage of treatment plants?  

2: Are marbled crayfish suitable as model organisms in toxicological studies? 

To address the first question, the whole reproduction cycle of both crayfish species Astacus astacus 

and Procambarus virginalis has to be investigated. Because of the complexity of the reproduction and 

the accompanying difficulty to detect the time and type of appearing effects on the animals, the 

reproduction cycle is split into two parts. The first part, described in chapter 2, covers effects on 

gonadal maturation of both female and male crayfish. This approach involves the exposure of mature 

crayfish to the two chemicals mentioned above. 
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The second part is designed to show effects occurring during the embryonic development of the two 

species in chapter 3. Therefore, the embryos were analysed while being separated from maternal 

animals. Investigated parameters represent both lethal and sublethal effects on the two species. 

To reflect and evaluate laboratory experiment results, a field experiment analysing the effects of 

wastewater treatment plants was carried out. The unknown influences of mixtures of 

anthropogenically produced and discharged concentrations of chemicals in surface waters are 

investigated in the last manuscript in chapter 4. To this end, adult egg-carrying female crayfish were 

exposed to an area influenced by wastewater. 

The inclusion of marbled crayfish in these studies is supposed to reveal possible similarities in 

responses to DCF and TBA concentrations in the two crayfish species. The highly invasive potential of 

this species excludes it from all outdoor setups. In laboratory experiments, however, these animals 

could improve the data in quantity and quality due to their high reproduction number and genetic 

conformity so that they could serve as model organisms for native freshwater crayfish species. 
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2  Gonadal development 

2.1 Effects of Diclofenac and Terbuthylazine on gonadal maturation of noble crayfish 

The first step of the reproduction of freshwater crayfish, even before mating, is the development of 

gonads. Therefore, this period is the first that was investigated in this study. The following section 

explains our experimental approach as well as the results and conclusion. These can help us to 

understand the influences of chemicals on the reproduction and on population dynamics of freshwater 

crayfish. 
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2.1.1 Abstract 

In recent decades, the production and use of pharmaceuticals and pesticides has increased 

significantly. However, this does not only lead to improvements in the human quality of life. Sooner or 

later, large quantities are discharged into surface waters through sewage treatment plants or 

agricultural drains. The effects of these substances on the aquatic environment are largely unknown. 

Therefore, part of these effects will be investigated in this study.  

Since noble crayfish are of particular importance for functioning ecosystems, we investigated the 

effects of two frequently detected and toxically relevant substances. In particular, we investigated the 

influence of Diclofenac and Terbuthylazine on the gonadal maturation and histopathology of the 

hepatopancreas of noble crayfish. The results show that even at the lowest tested concentrations of 

40 µg/L Diclofenac and 25 µg/L Terbuthylazine, sperm production and histology of the hepatopancreas 

of the animals is affected. The egg production of females was reduced from concentrations of 

0.16 mg/L Diclofenac and 1.6 mg/L Terbuthylazine. These results show that the reproduction and, thus, 

the population dynamics of noble crayfish are affected by the input of both substances. 
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2.1.2 Introduction 

In recent years, there has been growing concern about the release of organic compounds of 

anthropogenic origin to the environment, known as emerging organic contaminants. These 

contaminants include a diverse group of thousands of chemical compounds, such as pharmaceuticals 

and personal care products, pesticides, hormones, surfactants, flame retardants, plasticizers and 

industrial additives, among others (García et al., 2020). Two of the most frequently detected 

substances are Diclofenac (DCF) and Terbuthylazine (TBA).  

DCF is a non-steroidal anti-inflammatory drug (NSAID) that reduces pain, inflammation and fever 

(Satoh et al., 2015). It is introduced into surface waters due to human and veterinarian usage over the 

whole year, mostly through sewage treatment plants. Concentrations of up to 29.8 µg/L were 

observed in 55 countries (Dusi et al., 2019). TBA on the other hand is a chlorotriazine used worldwide 

as a pre-emergence herbicide in corn farming. Therefore, highest concentrations are frequently 

detected between September and April in concentrations up to of 34.0 µg/L in European water bodies 

(Herrero-Hernández et al., 2017). Their use is of emerging concern because of their persistence, 

toxicity and proven endocrine disruption in wildlife and humans. 

It is especially important to understand that toxic effects on animals, that have a strong influence on 

their environment in order to be able to estimate impacts on the whole aquatic environment. One of 

the animal groups with a high impact on its environment are freshwater crayfish. These are the largest 

invertebrates of freshwater bodies and affect nearly every trophic level of their habitat and influence 

their structural environment. All native freshwater crayfish in Europe are regarded as “keystone 

species“ and “ecosystem engineers“ (Weinländer and Füreder, 2016), and are consequently protected 

by the habitat directive (European Commission, 2000). Nevertheless, these species are highly 

endangered. Besides invasive species, the crayfish plague (Aphanomyces  ) and structural stress, 

chemical loads are one of the main reasons for population decline (Chucholl, 2011). In particular, the 

influences of presumed toxic chemicals on sensitive phases in the life cycle affect population 

recruitment and dynamics. One of these phases is the gonadal maturation. In this period the 

foundation for the next crayfish generation is built and disruptions can lead to smaller offspring 

numbers and to changing population dynamics. Therefore, we decided to investigate the influences of 

the two mentioned chemicals on the gonadal maturation of noble crayfish in a laboratory setup. 

We used noble crayfish (Astacus astacus, Linnaeus 1758), a species native to European freshwater 

systems. Its reproduction cycle can be described as the standard reproduction of freshwater crayfish. 

Mating of animals takes place in October to November, which is directly followed by the extrusion of 

eggs by female crayfish. Therefore, the gonadal maturation starts in June (Ackerfors, 1999). 
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2.1.3 Material and Methods 

2.1.3.1 Noble crayfish 

The 54 individuals of Astacus astacus (36 females and 18 males) were obtained from a hatchery in 

Oeversee (Krebszucht Oeversee, Schleswig-Holstein, Germany) in June. Their genetic origin lays in a 

northern German population of the Langsee. The crayfish had a carapace length between 43.6 mm 

and 61.0 mm and weighed between 23.5 g and 49.6 g. Individuals were separated to exclude 

cannibalism (especially during moulting), competition and stress. During adaption and experimental 

phase, they were fed with a mixture of frozen midge larvae, peas and a commercially used dry food. 

Temperature was adjusted to outdoor conditions (mean of 18 °C), and the light regime was L:D = 12:12 

hours. 

2.1.3.2 Substances 

All substances were used only up to concentrations of solubility to exclude the need of solvents, which 

could have additional effects on the animals. Concentrations were measured weekly by high 

performance liquid chromatography (HPLC) and adjusted when differing more than 15 % from the 

targeted concentrations. Groups were named according to concentrations and substances, D for DCF, 

T for TBA and 0 for the control.  

2.1.3.2.1 Terbuthylazine  

TBA was obtained from Sigma Aldrich, Germany, in 98 % purity. Concentrations were chosen to cover 

the range from concentrations occurring in surface waters to known effective concentrations from 

other taxa (Cedergreen and Streibig, 2005; Schramm et al., 1998; Shehata et al., 1997) as follows: 

0.025 mg/L, 0.4 mg/L, 1.6 mg/L and 6.4 mg/L. 

2.1.3.2.2 Diclofenac 

We purchased DCF (Tokyo Chemical Industry Co. Ltd., Tokyo, Japan) in 99.5 % purity. It was applied in 

concentrations to cover monitored concentrations of European surface waters as well as establishing 

higher concentrations that could occur due to bioaccumulation as follows: 0.04 mg/L, 0.16 mg/L, 

2.56 mg/L and 10.24 mg/L. 

2.1.3.3 Parameter monitoring 

Oxygen, pH, conductivity and temperature of all experimental tanks were measured three times per 

week with multi-parameter probes (WTW Oxi 3310 and WTW pH 3310, Xylem Analytics Germany Sales 

GmbH & Co. KG, WTW Weilheim, Germany) per hand and Temperature was measured additionally 

with a HOBO Logger (HOBO, ONS-UA-022-64 Onset Computer Corporation, Bourne, MA, USA). Nitrate, 

Nitrite, Ammonium and acid binding ability was measured once every week with a photometer (DR 

5000, Hach Lange GmbH, Düsseldorf, Germany) and titration. 
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Analyses of DCF and TBA concentrations were performed on an HPLC system (Hewlett Packard 1050) 

equipped with an UV-detector. The analytical separation was accomplished on a Zobrax SB-C18 column 

(250 × 4.6 mm; 5 μm particle size). For TBA, the chromatographic mobile phase contained acetonitrile 

(75 %) and water (25 %). The injection volume of the analytical solution was 10 μL. The flow rate of the 

mobile phase was kept at 1.0 mL/min and column temperature was kept at 30 °C. The detection 

wavelength was 228 nm. For the processing of samples, 5 mL were transferred to a 10 mL centrifuge 

tube; 2.78 g of (NH4)2SO4 was accurately weighed and added to the sample solution and shaken for 1 

min until the inorganic salt was completely dissolved. An amount of 0.46 mL acetonitrile was added to 

the mixture, placed in an ultrasonic cleaner (Bandelin Sonorex tk 52 Transistor, BANDELIN electronic 

GmbH & Co. KG, 12207 Berlin, Germany) for 9.5 min and centrifuged at 4000 rpm for 5 min until the 

ATPS (Aqueous Two-Phase System) was formed. The upper and lower phase were acetonitrile and 

inorganic salt, respectively. The analytes were extracted into the acetonitrile-rich phase. Then, 100 μL 

of the upper organic phase was collected and filtrated with a 0.22 μm organic membrane filter for 

HPLC analysis. The described method is modified from the method used by Gao et al. (2018). 

For DCF, the mobile phase contained 45 % acetic acid and 55 % acetonitrile. Injection Volume was 5 µl 

and flow rate was 1 ml/min. Temperature was set to 30 °C and the wavelength was set to 200 nm. 

Then, 1 ml of the samples was filtrated with a 0.22 μm organic membrane filter for HPLC analysis. This 

method was changed after Hartmann et al. (2008). 

As reference material for quantification calculations we dissolved three different concentrations of 

both chemicals in fully deionized water using an ultrasonic cleaner. 

2.1.3.4 Experimental setup 

Six Astacus astacus individuals per tank (W/L/H: 40 cm/120 cm/40 cm, four females and two males) 

were accustomed for two weeks and were later also used for the experiments. The animals were held 

in nine tanks with a different concentration of DCF or TBA each in a room with controllable light and 

temperature regime. The separation was achieved by a grid, so that females and males could detect 

the presence of the opposite gender, and at the same time cannibalism was excluded. The experiment 

started at the beginning of the ovary maturation at the end of June, according to Ackerfors (1999) and 

lasted until the start of egg-laying of these individuals. From the typical time of mating in late 

September, barriers were removed once a day for one hour. Barriers were completely removed when 

mating was observed. Male animals were removed at the time that all females showed the attached 

spermatophores. Males were then prepared for the observation of spermatophore quantity and 

quality in the distal ductus deferens after Farhadi et al. (2018). To this end, 1 g of the distal ductus 

versus was prepared and extracted and sperm cells were counted in a "Neubauer Improved" chamber. 

Additionally, a part of the sample was stained with trypan blue 0.4 % (Carl Roth GmbH + Co. KG, 76231 



 Gonadal development 

 

25 
 

Karlsruhe, Germany) to identify the ratio of dead and alive spermatophores in the sample. After the 

extrusions of eggs, these were counted and artificial breeding was started in an incubator equipped 

with UV-clarification, biofilter, oxygen supply and egg-moving trays to document survival of the 

embryos. Eggs of different concentrations were placed in a minimum of three trays and distributed 

over the incubator to exclude influences of placement, temperature differences or oxygen supply on 

the survival. 

2.1.3.5 Histology 

For histological assessment, we fixated the hepatopancreas of the prepared noble crayfish males in 

pH-buffered formaldehyde (3.7 %). We stored the sample in Kristensen solution for two days to ensure 

complete decalcification. Samples were then embedded in LR White (LR White acrylic resin, hard, 

sigma Aldrich, Germany) and sections of 2 µm thickness were prepared using an ultramicrotome. 

Sections were stained with haematoxylin and eosin (HE) with extended exposure time, referring to 

usage instructions of the LR White. These tissue samples were examined under a light microscope 

combined with a camera system (Leica DM1000 LED, Leica ICC50 HD, Leica Application Suite Version 

3.0.0, Leica Microsystems CMS GmbH, 35578 Wetzlar, Germany).  

A crayfish hepatopancreas is typically formed of numerous tubules, separated by connective tissues 

(Abd El-Atti et al., 2019) and consists of lumen, membranes and four types of epithelial cells: resorptive 

lipid cells (R-cell) for nutrient intake, blister-like secretory cells (B-cell) to channel off harmful 

substances, fibrillar cells (F-cell) as connecting tissue and embryonic cells (E-cell). That means, changes 

in R-cells would indicate a higher or lower intake of nutrients, changes in B-cells would indicate a higher 

or lower outtake of harmful substances, whereas changes in the other two types would indicate 

problems in biosynthesis of the individual. 

Hepatopancreas cells were examined for potential membrane damages, damages in the four different 

cell types as well as changes in their size and quantity. To do this, ten sections per individual were 

photographed and subsequently analysed by counting and measuring cells under the microscope. 

2.1.3.6 Statistics 

We performed all statistical analyses using R version 3.2. (R Core Team, 2015). Juvenile size, survival 

rates and number of hepatopancreas B-cells were tested for normality and equal variances prior to 

analysis. Both given, a one-way ANOVA (variance analysis) and post hoc Tukey test were performed. 

Differences in quantity of spermatophore number, spermatophore living rate, survival rate of eggs and 

laid eggs between different groups were tested for normality and equal variances prior to analysis. If 

both were evident, a t-Test was performed. For non-parametric data, a Wilcoxon test was used. 

Pictures were analysed with GIMP software (version 2.8, Fa. the Gimp Team). 
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2.1.4 Results 

2.1.4.1 Spermatozoa 

Quantity of spermatozoa cells differed between the individuals of different concentrations. Overall, 

the groups exposed to DCF had the lowest spermatozoa numbers, with averages of 684.3 (± 405.9) for 

D0.04 mg/L, 547.0 (± 397.6) for D0.16 mg/L, 420.6 (± 405.9) for D2.56 mg/L and 135.96 (± 46,0) for 

D10,24 mg/L. Sperm-cell number was higher for animals exposed to TBA. They had averages of 470 

(± 151.9) for T0.025 mg/L, 1551.6 (± 742.3) for T0.4 mg/L, 1090.9 (± 274.1) for T1.6 mg/L and 1066.6 

(± 463.8) for T6.4 mg/L. All groups showed numbers significantly lower than the control group which 

had an average of 2022.7 cells/µl (± 405.9) (p ≤ 0,0005; t-Test; Wilcoxon-Mann-Whitney-Test) (Figure 

2.1). It is worth noticing that the lowest sperm-cell numbers for animals exposed to TBA was counted 

in the lowest concentration. 

Similar to their quantity, also the quality of the spermatozoa is influenced by the two chemicals. 

However, the differences in quality are not as significant as for the quantity. For Diclofenac, only the 

highest concentration of 10.24 mg/L resulted in a significantly higher rate of dead cells (p = 1.4e-16). 

For Terbuthylazine significant differences were detected for the two highest concentrations 1.6 mg/L 

(p = 0.03) and 6.4 mg/L (p = 0.02). Figure 2.2 shows obvious differences between dead and alive sperm 

cells. 

 

Figure 2.1: Spermatozoa cells per µl. Dark areas represent the number of dead cells; light grey represents the living cells and 

the height of every bar the total average of counted cells. Stars indicate statistical differences (black: counted; white: 

percentage dead). 



 Gonadal development 

 

27 
 

 

 

 

 

 

 

 

 

            Figure 2.2: Spermatozoa cells stained with trypan blue 0.4 %. Dead cell (left) living cell (right).  

2.1.4.2 Eggs 

Figure 2.3 shows the quantities and survival rates of developed oocytes of noble crayfish in relation to 

the concentrations of the chemicals they were exposed to. It can be seen that the presence of the 

substances influenced the number and the survival of the laid eggs. The control group showed an 

average of 241.00 eggs/female (± 35.58). The group D0.04 mg/L had 151.25 (± 89.04) eggs/female and 

D0.16 mg/L had 106.50 (± 29.90) eggs/female. In the group D2.56 mg/L, only two of six females laid 

eggs, resulting in a statistical average of 27.50 (± 28.39) eggs/female. The group D10.24 mg/L did not 

lay eggs at all. For TBA, average egg numbers were 219.02 (± 39.06) for T0.025 mg/L, 179.75 (± 25.66) 

for T0.4 mg/L, 110.21 (± 14.97) for T1.6 mg/L and 77.54 (± 46.59) for T6.4 mg/L from only three 

females. The statistical analyses showed differences between the three highest Diclofenac groups 

(p ≤ 0.002; t-Test) and the two highest TBA groups (p ≤ 0.004) to the control group. 

Similar to the spermatozoa, the survival of the eggs is affected less by the chemicals than the number 

of eggs. The two highest Diclofenac groups (p ≤ 0.006) and the highest TBA group (p = 0.01) showed a 

significantly higher mortality than the control group. This combination results again in significantly 

smaller numbers of hatched eggs in all Diclofenac groups and the two highest TBA groups compared 

to the control group (p < 0.05, ANOVA, Tukey). 
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Figure 2.3:Egg cells per µl. Dark areas represent the number of dead embryos; light grey represents the living animals and the 

height of every bar the total average of counted eggs. Stars indicate statistical differences (black: laid eggs; white: hatched 

juveniles) 

2.1.4.3 Histology 

The histological observations show that with increasing concentrations of both chemicals, the B-cells 

of the adult animals are enlarged in comparison to the control group (Figure 2.4). Additionally, in 76 % 

of all investigated sections of the group exposed to highest TBA concentrations, damages in the lumen 

membrane were found. Other sections did not show these ruptures. 
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Figure 2.4: Histological sections of hepatopancreas of noble crayfish (Astacus astacus) exposed to the different concentrations 

for 120 days. Marked areas are lumen (L), membrane (M) and four types of epithelial cells: resorptive (R) lipid cells, blister-like 

(B) secretory cells, fibrillar (F) cells and embryonic (E) cells; (HE stain, 100×). 

The average diameter of B-cells in the control group was 26.86 µm (± 9.90). In comparison to that, 

individuals exposed to lowest TBA concentration showed B-cell diameters of 39.60 µm (± 11.51), while 

group T0.025 mg/L showed 41.61 µm (± 11.28). Exposure to highest TBA concentrations resulted in 

diameters of 76.78 µm (± 25.27) and to highest Diclofenac concentrations in diameters of 73.90 µm 

(± 18.21) (Figure 2.5). Statistical analyses showed that all groups differed significantly from the control 

group (p ≤ 0,0001, Tukey). 

a b b,c b,c,d e b,c d e e 

Figure 2.5: Diameter of hepatopancreas B-Cells of male adult noble crayfish exposed to different concentrations of the two 

chemicals DCF and TBA. Letters represent significant differences calculated via Tukey (p≤0,05) 
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2.1.5 Discussion 

Results of this study reveal effects of DCF und TBA on gonadal development of noble crayfish. All 

parameters investigated were affected by the two chemicals even in lowest concentrations used in 

this study. 

As one of the main factors influencing reproductive efficiency (Wickins and O'C Lee, 2003), sperm 

quality in male crustaceans is affected by the presence of environmental pollutants (Lewis and Ford, 

2012). Referring to (Harlıoğlu et al., 2018), we assessed this parameter by investigating sperm-cell 

number and ratio of dead and alive sperm cells in male distal ductus deferens. Literature shows that 

these factors are influenced by environmental chemicals. Canosa et al. (2019) showed, for instance 

that Glyphosate can imbalance the male reproductive function of the estuarine crab Neohelice 

granulata at concentrations of 1 mg/L by producing abnormal spermatophores and a reduction in 

sperm count. Hence, they conclude the possibility of a reduction in brood production and larvae 

recruitment that takes place in the natural environment. The present results of spermatophore 

analyses lead to the same conclusion, insofar that the quantity and quality of sperms is significantly 

reduced even at the lowest used concentrations of 0.025 mg/L TBA and 0.04 mg/L DCF. Therefore, this 

study reveals that TBC and DCF present in surface waters through sewage treatment plants or by 

agriculture are a severe threat to noble crayfish populations. 

But not only the male reproduction efficiency of noble crayfish is affected. The egg production and 

survival of embryos is also affected by the two chemicals, when exposed during gonadal development. 

With an average of 241 eggs per female the control group is consistent with the range of egg numbers 

for noble crayfish of 70 to 250 eggs reported in the literature, depending on maternal size (Skurdal et 

al., 2011). Even though the two chemicals do not affect the gonadal development of the females as 

much as for males, effects are still alarming. Especially the combination of smaller egg numbers with 

the smaller survival rate of embryos consequently lead to a much lower individual count of the 

offspring of influenced animals than for the control group, as is visible in the number of survived 

embryos until hatching. Groups exposed to DCF all show significantly smaller offspring numbers 

compared to the control group; the same applies to the two highest TBA groups. Meyer et al. (2007) 

revealed that spawning probability as well as juvenile and adult mortality are the most important 

parameters for the survival of crayfish populations. They also estimated the median time to extinction 

of native crayfish populations to be 80 years for a set of parameters derived from field estimates. This 

shows how important a stable recruitment of noble crayfish will be in the future to ensure the survival 

of this species. 

The histology of the hepatopancreas shows effects even at lowest concentrations of DCF and TBA in 

the form of an increase in the number and diameter of B-cells compared to the control. In addition, 

we found damage to membrane structures similar to Chaufan et al. (2006) for high TBA concentrations. 
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Their study revealed disorganisation in hepatopancreas tubules as well as increased diameters and 

numbers of B-cells in hepatopancreas cells after feeding crabs (Chasmagnathus granulatus) with 

Hexachlorobenzen-contaminated Chlorella for three days. 

Therefore, an increase in the size and number of B-cells is a sublethal effect of exposure to at least TBA 

and Hexachlorobenzen as examples for agricultural control chemicals. Silveyra et al. (2018) tested the 

influences of Atrazine (which was substituted by TBA and is similar in form and shape to TBA) on 

vitellogenesis, steroid levels and lipid peroxidation in female red swamp crayfish Procambarus clarkii. 

They found that Atrazine-exposed crayfish had a lower expression of vitellogenin in the ovary and 

hepatopancreas as well as smaller oocytes and reduced vitellogenin content in the ovary. Similar to 

what is observed in this study for DCF and TBA, the Atrazine leads to a lowered reproduction of the 

crayfish. Not only Terbuthylazine, but also its degradation products are of great interest due to their 

toxicity. Koutnik et al. (2017) showed effects of terbuthylazine-2-hydroxy-exposure in concentrations 

of down to 75 μg/L on early life stages of marbled crayfish. Influenced parameters were: embryo 

weight, ontogenetic development, the antioxidant system, oxidative stress and pathological changes 

in the hepatopancreas. Therefore, influences on the hepatopancreas are not only caused by TBA but 

also by its degradation products. 

Only few data are available for effects of DCF on hepatopancreas tissue. Geetha et al. (2018) report 

significant changes in nucleation, differentiation, and hepatocytes in a histopathological study on a 

Pangasius sp. hepatopancreas sample starting from 6 mg/L DCF. 

Neuparth et al. (2014) showed that Simvastatin, a lipid-lowering medication, severely impacted 

growth, reproduction and gonad maturation of G. locusta, concomitantly to changes at the histological 

level. Among all analyzed endpoints, reproduction was particularly sensitive to Simvastatin with 

significant impact at 320 ng/L. Du et al. (2016) showed a significant lower brood number of Daphnia 

magna starting from 0.5 mg/L DCF. The danger of pharmaceuticals and especially DCF on reproduction 

is, hence proven by several publications including the present one. 

Overall, the data of the present study show that both environmentally relevant substances, DCF and 

TBA, pose a high risk for the reproduction of crayfish. Not included in the evaluation were mixed effects 

with other chemicals or the bioaccumulation of the substances, which could further increase the 

effects. It is, thus, of particular importance to further expand the data available on these issues and at 

the same time minimize inputs of pollutants into surface waters as far as possible. 
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2.2 Effects of Diclofenac and Terbuthylazine on gonadal maturation of marbled 

crayfish 

 

Effects of Diclofenac and Terbuthylazine on gonadal 

maturation of marbled crayfish 

2.2.1 Introduction 

In addition to the manuscript above, we used marbled crayfish (Procambarus virginalis, Lyko 2017) for 

a similar investigation. The aim was to test its suitability as a model organism for the estimation of 

effective concentrations of TBA and DCF, as its gonadal maturation is significantly different from other 

crayfish species due to their parthenogenetic reproduction. 

2.2.2 Material and methods 

2.2.2.1 Marbled crayfish 

All investigated female Procambarus virginalis were obtained from the research group of Frank Lenich 

in Regensburg. Animals were caught manually via diving. Similar to the experimental setup of the noble 

crayfish, three marbled crayfish were kept in 20 L-tanks for two weeks to adjust to the laboratory 

conditions and were separated to exclude cannibalism, competition and stress. Due to different 

optimal reproduction conditions, the temperature was set at 24 °C and the light regime was 

L:D = 8:16 hours. On account of low availability, we were only able to use 35 individuals. Therefore, 

the Investigations were conducted with one concentration less in comparison to the noble crayfish 

setup. 

Substances and parameter monitoring were for the same as in the noble crayfish study. The 

experimental setup was adjusted to the requirements of marbled crayfish, which is described in the 

following. Histological examinations were not carried out due to insufficient data (see below). 

2.2.2.2 Experimental setup 

The investigated marbled crayfish were kept in 14 tanks with 18 litres volume each. The tanks were 

placed in climate chambers to assure constant temperature and light regimes and were equipped with 

one circulator 650 pump (AQUAEL Deutschland GmbH, 40699 Erkrath, Germany) with aeration each. 

Two or three animals were kept per tank and treatment and were separated by partitions. The 

parthenogenetic reproduction of these animals allowed us to start the experiment at any given date 

of the year. In this case, the experiment started in July and was conducted until all individuals of the 

control group extruded eggs at least once. After the extrusion, eggs were counted and artificial 
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breeding started in an incubator as in the manuscript above on noble crayfish. All juveniles were 

measured via photography with a scale and the software ”GIMP“ (version 2.10.18, The GIMP-Team), 

and mortality was observed and analysed. 

2.2.3 Results 

2.2.3.1 Number of eggs and survival of embryos 

As shown in Figure 2.6, the number of laid eggs and the survival of eggs are quite similar regarding the 

different concentrations of the two chemicals. The large standard deviations of all groups and the low 

egg production of the control are noteworthy. There were no significant differences in numbers of 

eggs or hatched individuals.  

 

Figure 2.6: Egg cells per µl. Dark areas represent the number of dead embryos; light grey represents the living animals and 
the height of every bar the total average of counted eggs. 

2.2.3.2 Size of juveniles 

The size of the hatched juveniles has only been measured for five concentration groups (Figure 2.7). In 

the other two group no embryos survived until hatching. Significant differences were found only for 

the DCF concentration of 0.16 mg/L, which showed a lower size in comparison with the groups exposed 

to 2.56 mg/L DCF and 0.4 and 1.6 mg/L TBA.  



 Gonadal development 

 

37 
 

 

 

 

 

 

 

 

 

Figure 2.7: Hatching size of marbled crayfish after parental exposure to different chemical concentrations. Letters indicate 
significant differences. 

2.2.4 Conclusion 

Contrary to noble crayfish, gonadal development of marbled crayfish seems not to be negatively 

influenced by the two tested chemicals. Neither the number of laid eggs and survival of these, nor the 

size of hatched juveniles showed clear evidence of any negative effects. Even though there are 

significant differences in the size of juveniles exposed to 0.16 mg/L DCF in comparison to three other 

groups, the fact that the lowest DCF concentration results in the lowest body size of all observed 

groups shows that the reasons for these differences are not to be found in chemical concentrations. 

Most likely, maternal size and individual fitness caused this effect. Also, the very limited number of 

hatched juveniles impairs the reliability of this data. 

Overall, it can be assumed, that the shorter gonadal development and the missing impact on 

spermatozoa production lead to a higher resistance of the gonadal development of marbled crayfish 

to environmental pollution.  
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3 Embryonic development 

After the illumination of effects on gonadal development and mating, observations on effects of the 

chosen chemicals on the embryonic development are needed to evaluate the influences on the whole 

reproduction cycle and, therefore, the impacts on population dynamics due to reproduction 

disruptions. The following manuscripts show the impact of TBA and DCF on embryos of both species 

Astacus astacus and Procambarus virginalis. Both of these manuscripts are submitted to peer-

reviewed journals (Terbuthylazine; Water, Air, & Soil Pollution; Diclofenac: International Aquatic 

Research). 

3.1 Noble crayfish are more sensitive to Terbuthylazine than parthenogenetic 

marbled crayfish 
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Noble crayfish are more sensitive to Terbuthylazine 

than parthenogenetic marbled crayfish 

3.1.1 Abstract 

We investigated the sensitivity of two freshwater crayfish species (Astacus astacus and Procambarus 

virginalis) during embryonic development to chronic exposure to the herbicide Terbuthylazine under 

laboratory conditions. The assessed parameters included time of embryonic development, survival 

rate, hatching weight and histopathology of hepatopancreas. LC50 (median lethal concentration) and 

ED50 (median effective concentration) were estimated. We were able to determine effects of TBA for 

every investigated parameter. For noble crayfish the LC50 value after 45 days was 0.11 mg/L and the 

histology of the hepatopancreas showed effects starting from 0.025 mg/L. Other parameters revealed 

effects starting at concentrations of 1.6 mg/L for weight and 6.4 mg /L for embryonic development 

time and hatching rate. Marbled crayfish only showed effects concerning the hatching rate and survival 

rate at concentrations without a clear dose effects curve. As a conclusion, our data shows the risk of 

TBA in existing concentrations in freshwater ecosystems to non-target organisms and also the need of 

toxicological studies on directly affected species in addition to the use of model organisms.  

3.1.2 Introduction 

Terbuthylazine is a chlorotriazine used worldwide as a pre-emergence herbicide in corn farming. This 

leads to peaks of TBA concentrations in natural water bodies during March and April. Its use is of 

emerging concern because of its persistence, toxicity and proven endocrine disruption in wildlife and 

humans (Tasca et al., 2019). It is also one of the most frequently detected pesticides in natural waters 

(Dolaptsoglou et al., 2007). Concentrations of more than 34.0 µg/L were detected in surface waters in 

Spain (Herrero-Hernández et al., 2017). Despite its prevalence in European ecosystems, little is known 

about the effects of this pollutant on most freshwater invertebrate species.  

Freshwater crayfish affect nearly every trophic level of their habitat and influence their structural 

environment due to their burrowing activity. Therefore, these largest invertebrates of freshwater 

bodies are called “keystone species“ and “ecosystem engineers“ (Weinländer and Füreder, 2016). 

Consequently, the habitat directive protects all native freshwater crayfish species in Europe (European 

Commission, 2000). Nevertheless, these species are highly endangered. Invasive species, the crayfish 

plague (Aphanomyces astaci), structural stress and chemical loads cause population decline (Chucholl, 

2011). The influences in particular of presumed toxic chemicals on sensitive life stages affect 

population recruitment and dynamics. One highly sensitive life stage is the development of crayfish 

embryos (Khan and Nugegoda, 2007). During this period, between November and June (Ackerfors, 
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1999), the embryonic individual is exposed to the environment and its possibly harmful substances 

without the possibility of active avoidance. Because of its usage as a pre-emergence herbicide, the 

highest concentrations of TBA are detected at the beginning of spring and therefore in this sensitive 

development period of freshwater crayfish (Lorente et al., 2015).  

For this reason, we examined the effects of TBA on the embryonic development of two freshwater 

crayfish species. We used marbled crayfish (Procambarus virginalis, Lyko 2017) to test its suitability as 

a model organism. One female can produce up to 700 eggs every 8–9 weeks. The offspring is genetically 

identical due to the species’ parthenogenetic reproduction strategy (Chucholl and Pfeiffer, 2010; Vogt 

et al., 2004), thus providing a predictable and continuous supply of clonal eggs and making this species 

a suitable model organism for higher invertebrates with a longer embryonic development (Hossain et 

al., 2018; Vogt, 2018). The second organism we studied was the native noble crayfish (Astacus astacus, 

Linnaeus 1758), as it is especially suitable for our study due to its natural habitats (lower sections of 

streams, lakes etc.), which are often influenced by agricultural drainage and sewage (Skurdal, J. and 

Taugbøl, T., 2002). 

Parameters that can indicate lethal and sublethal effects of herbicides on the reproduction of 

freshwater crayfish are embryonic development, survival rate, hatching weight and the histopathology 

of the hepatopancreas of the juveniles (Velisek et al., 2013). Changes in the first three parameters 

directly influence the development of populations. At the same time, the hepatopancreas is the site of 

nutrient absorption, digestion, synthesis and secretion of digestive enzymes and reserve storage in 

decapods (Calvo et al., 2011; Johnston et al., 1998; Xiao et al., 2014). It is formed of numerous tubules 

separated by connective tissues (Abd El-Atti et al., 2019) and consists of a lumen, membranes and four 

types of epithelial cells: resorptive lipid cells (R-cell) for nutrient intake, blister-like secretory cells (B-

cell) to channel off harmful substances, fibrillar cells (F-cell) as connecting tissue and embryonic cells 

(E-cell). This means, changes in R-cells would indicate a higher or lower intake of nutrients, changes in 

B-cells would indicate a higher or lower outtake of harmful substances, whereas changes in the other 

two types would indicate problems in the biosynthesis of the individual. For this reason, 

hepatopancreas tissue is used for monitoring the health of crayfish and can indicate diseases and 

exposure to harmful substances (Velisek et al., 2017; Xiao et al., 2014). We hypothesize that TBA 

exposure influences the aforementioned parameters in both species of freshwater crayfish, A. astacus 

and P. virginalis, and that the marbled crayfish embryos and noble crayfish embryos are affected by 

the herbicide in a similar way. 
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3.1.3 Material & methods 

3.1.3.1 Chemicals 

Terbuthylazine was obtained from Sigma Aldrich, Germany, in 98 % purity. Concentrations were 

chosen to cover the range from concentrations occurring in surface waters to known effective 

concentrations from other taxa (Cedergreen and Streibig, 2005; Schramm et al., 1998; Shehata et al., 

1997) as follows: 0.0 mg/L; 0.025 mg/L; 0.1 mg/L; 0.4 mg/L; 1.6 mg/L; 6.4 mg/L and 12.8 mg/L. Due to 

low solubility (5 mg/L in 20°C) TBA was dissolved in Dimethylsulfoxid (DMSO). To exclude effects of 

DMSO a control group with this solvent was included.  

3.1.3.2 Origin of brood stock and eggs 

Noble crayfish (15 females and six males) were obtained from a hatchery in Schleswig-Holstein 

(Krebszucht Oeversee, Germany) in November and transferred to the facilities of Kiel University. Three 

groups of five females and two males were kept in three recirculating 600 L tanks throughout the 

reproduction period. Temperature was set at 8°C and a light regime of L:D = 10:14 was provided. 

Females were checked for eggs daily. Eggs were separated from females after a two week period at 

4 °C in winter, and artificial breeding was started in an incubator equipped with UV clarification, 

biofilter, oxygen supply and egg-moving trays.  

Marbled crayfish were bred in facilities of Kiel University; animals were obtained beforehand through 

the aquatic trade and kept individually in 12 separate 25 L aquaria in aerated tap water. The ambient 

temperature was 23°C, the light regime was L:D = 10:14 hours. All animals were fed frozen midge larvae 

and peas ad libitum. Under these conditions, P. virginalis produced parthenogenetic eggs every 8–9 

weeks in our laboratory. These eggs were separated 72 hours after laying.  

3.1.3.3 Experimental design, setup and data collection 

Separated eggs were transferred directly to twelve 12-well multititer plates (Greiner bio-one, 

Kremsmünster, Austria) with one single egg per well; all eggs were randomly assigned to the wells. 

Stock solutions were made weekly for each concentration with double the concentration of final TBA. 

Testing solutions were then prepared daily by diluting stock solution with a mixture of 30 % tap water 

and 70 % VE Water, which we autoclaved. Each well was filled with 1.5 mL test-solution.  
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Table 3.1: Concentrations, trials, designations and numbers of replicates per species. 

Species Trial [days] Designation No. per concentration  

P. virginalis  0–15 PT 36 

A. astacus  0–45 AT 12 

A. astacus  0–15 A1 12 

A. astacus  15–30 A2 12 

A. astacus  30–45 A3 12 

 

All multititer plates were placed on a laboratory shaker (Dual-Action shaker K 2, Edmund Bühler GmbH, 

72411 Bodelshausen, Germany) that provided 60 movements per minute to ensure constant supply of 

oxygen and simulate parental movement of the abdomen. Experimental solutions were exchanged 

daily. 

The transparent membrane of crayfish eggs enables us to examine the status of the embryonic 

development under a stereomicroscope (Alwes and Scholtz, 2006). Using this method, we recorded 

developmental stages and mortality three times per week. We converted the developmental stages 

described by (Sandeman and Sandeman, 1991) noble crayfish) and (Alwes and Scholtz, 2006), marbled 

crayfish) into percentages to allow direct comparability of the embryonic development between 

species. Due to their different reproduction strategies, the development time of marbled crayfish (650 

degree days) is three times shorter than the development time of noble crayfish (1900 degree days) 

(Kozák, 2015; Skurdal, J. and Taugbøl, T., 2002). Therefore, we exposed noble crayfish for the duration 

of their complete embryonic development in one trial, and in another investigation, we exposed the 

embryos in the first, second and third phase of their development, resulting in equal exposure times 

of 15 days for each treatment (Table 3.1). Survival was also observed in the time after the exposure 

until the first moult. After this, the study was terminated. At this time, the fresh weight of the moulted 

animals was measured (Sartorius R160P-*D1 R160P Balance, Sartorius AG 37079 Goettingen, 

Germany). 

3.1.3.4 Histology 

After 45 days of exposure three noble crayfish juveniles from each concentration (24 in total) were 

fixated in Formaldehyde (3.7 %) and decalcified for two weeks in Kristensen solution. After washing in 

Phosphate Buffered Saline (PBS) three times for 15 minutes, the animals were brought into an ethanol 

series (2 x 50 %, 70 %, 90 %, 2 x 99 %, 30 min. each) and bedded in LR White in gelatin capsules as 

described in Table 3.2 (LR White acrylic resin, hard, Sigma Aldrich, Germany). 
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Table 3.2: Proportion of solutions, times and temperature for embedding juvenile crayfish in LR White. 

 

 

 

 

 

 

 

Sections of 2 µm were made using an ultramicrotome. Sections were stained with haematoxylin and 

eosin (HE) with an extended exposure time due to acrylic embedding in accordance with LR White 

instructions for use. Tissues of hepatopancreas were examined under a light microscope combined 

with a camera system (Leica DM1000 LED, Leica ICC50 HD, Leica Application Suite Version 3.0.0, Leica 

Microsystems CMS GmbH, D-35578 Wetzlar, Germany). The examination of hepatopancreas cells 

included the observation of membrane damage, damage in the four different cell types and changes 

in size and number of the four different cell types per hepatopancreas compartment. For this 

procedure, 10 sections per individual were photographed and subsequently analysed by counting and 

measuring cells. 

3.1.3.5 Statistical methods 

We performed all statistical analyses using R (R Core Team, 2015). The weight of the juveniles and 

number of B-cells per compartment were tested for normality and equal variances prior to analysis. 

Afterwards, a one-way ANOVA was performed and subsequently a Tukey post-hoc test. For non-

parametric data, a Kruskal-Wallis test was used. The LC50-values were control corrected using Abbott’s 

correction first and then estimated utilizing the trimmed Spearman-Karber method. Survival rates 

were analysed using the Kaplan-Meier survival analysis of Gehan Breslow and the groups were 

compared via the Holm-Sidak method. The embryonic development was analysed via linear 

regressions. Due to good correlation values (> 0.8) the linear regressions were compared with an 

ANCOVA (analysis of covariances). Photographs were analysed in GIMP (version 2.8, Gimp Team). 

LR-White: Ethanol Time [h] Temperature [°C] 

1:2 2 20 

1:1 2 20 

2:1 2 20 

1:0 2 20 

1:0 2 20 

1:0 12 20 

1:0 48 60 
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3.1.4 Results  

3.1.4.1 Embryonic development time 

The development time of group PT embryos was not affected by any of the applied TBA concentrations. 

The development of group AT was affected by TBA concentrations with significant effects detectable 

at 6.4 mg/L and higher (p ≤ 0.028, Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Linear regressions of embryonic development of marbled crayfish (PT) and noble crayfish 
(AT) in different concentrations of TBA over Time. 
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In detail, TBA did influence the last two thirds of embryonic development. There were no differences 

in development of group A1, but in group A2 embryos exposed to the TBA concentrations of 6.4 and 

12.8 mg/L developed slower in comparison to other groups (p ≤ 0.036). The exposure to TBA of group 

A3 showed that the three highest concentrations significantly slowed down embryonic development 

(p ≤ 0.012, Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Linear regressions of embryonic development of noble crayfish in different concentrations 
of TBA over time in first (A1), second (A2) and last (A3) third of development. 
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3.1.4.2 Weights  

Animals in group PT exposed to higher concentrations tended to have a lower weight at hatching (Table 

3.3). However, the ANOVA did not reveal significant differences (p > 0.05).  

Weights of noble crayfish were only recorded for groups A1, A2 and A3 because of an overall high 

mortality of noble crayfish of group AT. Group A1 was strongly impacted by TBA concentrations of 

1.6 mg/L upwards resulting in a decline in mean body weight of 46.36 % compared to the control 

groups (p ≤ 0.0434). The influence on group A2 is limited to a concentration of 6.4 mg/L (p ≤ 0.0256). 

In group A3, all individuals exposed to concentrations above 0.4 mg/L died before the first moult and 

no differences in hatching weight were observed for the remaining concentrations.  

Table 3.3: Average weights in mg plus standard deviation at hatching in the different treatment groups. 

 

 

 

 

 

 

 

3.1.4.3 Survival rate  

The survival rates of group PT exposed to different TBA concentrations are shown in Figure 3.3. Both 

control groups and the lowest concentration supported the highest survival rates in a range between 

60 and 66 %. The lowest survival rates were recorded at 33 % in treatments exposed to TBA 

concentrations of 12.8 mg/L. Statistically significant differences to control treatment H2O were found 

for concentrations of 0.1 mg/L, 1.6 mg/L and 12.8 mg/L (p < 0.02). The LC50-value for this group was 

42.38 mg/L for 15 days of exposure. Due to the absence of a correlation between dose and effect, the 

standard error was greater than the estimated value (± 66.00).  

 

 

 

 

Treatment A1 [mg±SD] A2 [mg±SD] A3 [mg±SD] PT [mg±SD] 

0.00 [mg/L] 25.08 ± 1.47 23.53 ± 2.17 18.84 ± 1.8 3.54 ± 0.55 

DMSO [mg/L] 24.00± 0.57 22.15 ± 1.09 19.60 ± 0.79 3.59 ± 0.52 

0.025 [mg/L] 22.08 ± 4.08 24.34 ± 1.32 18.16 ± 0.88 3.45 ± 0.60 

0.1 [mg/L] 22.03 ± 4.17 24.53 ± 0.78 19.78 ± 0.74 3.47 ± 0.51  

0.4 [mg/L] 19.10 ± 4.30 23.62 ± 1.08 19.05 ± 0.65 3.50 ± 0.43 

1.6 [mg/L] 17.35 ± 3.99 23.58 ± 3.69 / 3.15 ± 0.59 

6.4 [mg/L] 13.45 ± 0.75 20.58 ± 2.15 / 3.14 ± 0.60 

12.8 [mg/L] 15.65 ± 3.25 22.38 ± 2.60 / 3.11 ± 0.70 
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Survival rates in group AT (Figure 3.4) were significantly lower than for marbled crayfish. Only 

individuals in the control group H2O (20 %) and in the lowest concentration of 0.025 mg/L (10 %) 

completed the first moult. The two treatments with the highest TBA concentrations were also showed 

significantly lower survival rates than the control groups and treatments with lower concentrations of 

0.025, 0.1 and 1.6 mg/L (p ≤ 0.043). The calculated LC50
 (45d) was 0.1110 mg/L (SD = 0.099). 
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Figure 3.3: Survival rates for marbled crayfish exposed to different concentrations of TBA during the 
experiment. The blue area shows the exposure time frames. 

Figure 3.4: Survival rates of noble crayfish group AT exposed to different concentrations of TBA over a period of 60 days. The 
blue area shows the exposure time frames 
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When exposing the embryos of noble crayfish to TBA for timeslots of 15 days, higher impacts occurred 

in groups A1 and A3 during the entire development time. Within the first third, the survival rate 

dropped below 40 % for every group (Figure 3.5) with significantly lower survival rates in the three 

highest concentrations. If TBA exposure took place during the second period of development, only the 

group exposed to the highest concentration of 12.8 mg/L had a significantly lower survival rate, similar 

to the first third. In the final third of development, the three highest treatments showed a significant 

impact on the survival of noble crayfish embryos. LC50
 (15d) values (1.051 mg/L; 6.982 mg/L; 

0.257 mg/L) for the three time frames showed a higher impact in the first and last part of embryonic 

development.  
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Figure 3.5: Survival rates of noble crayfish exposed to different concentrations of TBA over time in first 
(A1), second (A2) and last (A3) third of development. The blue areas indicate exposure time frames. 
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3.1.4.4 Histology 

Figure 3.6 illustrates the effects of TBA on hepatopancreas structure of A. astacus. The average number 

of B-cells per hepatopancreas cell in the control group is 24.6. All sections of all concentrations showed 

a higher abundance of B-cells and enlarged B-cells compared to the control group. At concentrations 

of 0.025 mg/l the number of B-cells (69,86) was significantly higher (p < 2 e-16). Even though the highest 

concentrations showed a number of 41.86 B-cells per section on average, the cells were about twice 

the size of the B-cells in the control group. Additionally, no membrane disruption occurred in the 

control groups, whereas we observed disruptions in groups with concentrations of 0.025 mg/L in 20 % 

of all sections. From concentrations of 1.6 mg/L upwards, this membrane damage was present in every 

section. 

 

 

 

 

 

 

 

 

3.1.5 Discussion 

Our results highlight clear differences in sensitivity to TBA exposure between marbled and noble 

crayfish embryonic development. This questions the suitability of marbled crayfish as a model when 

studying environmental impacts on native freshwater crayfish such as noble crayfish. Even though 

genetic uniformity, ease of culture, and a broad behavioral repertoire encourage the use of marbled 

crayfish in epigenetics and developmental biology, as well as physiological, ecotoxicological, and 

ethological research (Hossain et al., 2018; Vogt, 2008), the possibility of transferability of 

ecotoxicological effects to other species is questionable. The lower sensitivity of marbled crayfish 

compared to noble crayfish can on the one hand be explained by a threefold longer embryonic 

development and therefore a longer exposure time of the latter. Additionally, Vogt (2010) described 

marbled crayfish as tolerant towards broad ranges of environmental conditions for long periods of 

time. Considering the results of Rubach et al. (2011) demonstrating that freshwater arthropod species 

can be highly variable in their dynamic response to a particular stressor, it is reasonable that the low 
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Figure 3.6: Histological sections of hepatopancreas in juvenile noble crayfish (Astacus astacus) 

exposed to Terbuthylazine for 45 days. Ⅰ: control with marked lumen (L), membrane (M) and four 
types of epithelial cells: resorptive (R) lipid cells, blister-like (B) secretory cells, fibrillar (F) cells and 

embryonic (E) cells; Ⅱ: group exposed to 0.025 mg/L TBA for 45 days; Ⅲ: group exposed to 
12.8 mg/L TBA for 45 days (HE stain, 200×). 
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sensitivity of marbled crayfish leads to lower effects of TBA on the organism than on noble crayfish, 

described as more sensitive overall (Holdich, 2002). 

It is evident, however, that TBA affects/slows down the overall embryonic development time of noble 

crayfish, while effects are strongest if animals are exposed during the second and final third of their 

embryonic development. In this phase, gastrulation is complete and all compartments of the crayfish’s 

body are present, at least in rudimentary form (Alwes and Scholtz, 2006; Sandeman and Sandeman, 

1991). Consequently, TBA is likely to hinder growth and specification of the compartments once their 

main structures are developed. This assumption is corroborated by the work of Gutiérrez et al. (2019), 

who described that TBA leads to biochemical changes in the species Scrobicularia plana, namely in 

protein contents and enzymatic activity levels, since the protein and enzymatic development take part 

in the later embryonic development of crayfish (Alwes and Scholtz, 2006). The elongated embryonic 

development can be seen as a reason for the lower weights of juvenile crayfishes. Crayfish start feeding 

at the third juvenile stage. Up to this time the embryo gets its energy from its extensive yolk reserves 

(Vogt and Tolley, 2004). Lower weights of crayfish embryos caused by organic pollutants have been 

described previously (Velisek et al., 2017). Differences regarding the different concentrations of TBA 

were only present when noble crayfish embryos were exposed in the first period of their development. 

Here, gastrulation as well as the development of the immune system and excretory organs take place 

(Sandeman and Sandeman, 1991). When considering results of the histology of the hepatopancreas it 

is reasonable to assume that abnormalities of the hepatopancreas are connected to the lower weight 

of the hatched individuals. For outdoor populations late hatching and lower weight can have serious 

consequences, since smaller and slower growing individuals have a lower survival potential due to 

lower feeding success and increased mortality through predation, as shown for marine fishes (Franke 

and Clemmesen, 2011). For crayfish it is also known that lower body weights from, for example, 

starvation cannot be fully recovered (Powell and Watts, 2010).  

As our data show, there is a higher influence of TBA for treatments A1 and A3 than on A2 in terms of 

mortality. Points in time of the highest mortalities correlate with gastrulation, biosynthesis and 

hatching (Alwes and Scholtz, 2006), leading to the assumption that these stages are more sensitive to 

the potential pollutant than other stages. The usage as pre-emergence herbicide in March and April 

can at the same time lead to the highest concentrations of TBA during the first period of embryonic 

development (Ackerfors, 1999). The combination of the resulting lower number of individuals, lower 

weight and later hatching eventuates in an even lower competitivity of noble crayfish against invasive 

crayfish species, whereas the interaction of native and invasive species is of severe conservation 

interest (Pacioglu et al., 2020). 
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The histology of the hepatopancreas shows effects even at lowest concentrations in the form of an 

increase in the number and diameter of B-cells compared to the control group for every concentration 

of TBA for noble crayfishes. In addition, we found damage to membrane structures similar to Chaufan 

et al.(2006) for every concentration. Their study revealed disorganisation in hepatopancreas tubules 

as well as increased diameters and numbers of B-cells on hepatopancreas cells after feeding crabs 

(Chasmagnathus granulatus) with hexachlorobenzen-contaminated Chlorella for three days. 

According to this result, an increase in the size and number of B-cells is a sublethal effect of exposure 

to at least these two agricultural control chemicals. Silveyra et al.(2018) tested the influences of 

atrazine (which was substituted by TBA and is nearly similar in form and shape to TBA) on 

vitellogenesis, steroid levels and lipid peroxidation in female red swamp crayfish Procambarus clarki. 

They found that atrazine-exposed crayfish had a lower expression of vitellogenin in the ovary and 

hepatopancreas as well as smaller oocytes and reduced vitellogenin content in the ovary. This shows 

an additional effect on the hepatopancreas caused by chlorotriazines that can lead to decreased 

reproduction. They also showed that atrazine caused a higher metabolic effort in terms of lactate 

production, presumably triggered to provide the energy needed to face the unspecific stress produced 

by the herbicide. This higher metabolic effort, or trade-off effect, could explain the sublethal effects 

pointed out in this study. Besides Terbuthylazine, the degradation products are of great interest due 

to their toxicity. Koutnik et al. (2017) showed that terbuthylazine-2-hydroxy-exposure in 

concentrations of down to 75 μg/L affected growth, ontogenetic development, the antioxidant system, 

and caused oxidative stress and pathological changes in the hepatopancreas of early life stages of 

marbled crayfish. Therefore, not only the herbicide itself is a threat to non-target organisms but also 

the degradation product, which prolongs harmful consequences by the usage of herbicides containing 

Terbuthylazine. 

In conclusion, TBA has an influence on the reproduction of the two freshwater crayfish species in all 

investigated parameters. Sublethal effects can be seen at every concentration, while their influence 

on future generations remains unclear. The wide range of effects of TBA on the embryonic 

development of freshwater crayfish shows the complexity of consequences caused by pollutants for 

these organisms. The length of time and type of use of TBA as a pre-emergence herbicide possibly 

leads to a generation of crayfish with variations in their hepatopancreas. This variation can again have 

influences on the respiratory activity and therefore on the overall fitness, especially of the endemic 

noble crayfish. The data of this study show the high risk of TBA on the non-target organisms that are 

crayfishes. Considering the important role of crayfishes for their habitat, the dangers posed by TBA for 

surface waters are highly relevant. 
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Effects of Diclofenac on the embryonic development of 

freshwater crayfish 

 

3.2.1 Abstract 

In recent years, there has been increasing concern about the ecotoxicological consequences of the 

drug Diclofenac on freshwater organisms. Influences on the largest freshwater invertebrates, the 

freshwater crayfish, are especially interesting in the context of cascading effects due to their important 

role as keystone species. In this study, we investigated lethality, influences on body weight, embryonic 

development, and histological changes in embryos of marbled crayfish (Procambarus virginalis) and 

noble crayfish (Astacus astacus) in response to their exposure to different concentrations of 

Diclofenac. Additionally, we proved the suitability of marbled crayfish as a model organism for endemic 

freshwater crayfish, when studying the effects of Diclofenac. For both species, lethal effects started at 

concentrations of 10.24 mg/L Diclofenac, weight was not affected, embryonic development slowed 

down from concentrations of 0.16 mg/L, and histological changes were visible from concentrations of 

0.64 mg/L. The similarity of LOEC (Lowest Observed Effect Concentrations) between the two species 

shows that marbled crayfish can serve as a model for investigations regarding the effects of exposure 

to Diclofenac for native crayfish. 

3.2.1.1 Highlights: 

- The effects of Diclofenac can be studied on marbled crayfish as a model organism for other 

crayfish species. 

- Lethal effects start from concentrations of 10.24 mg/L Diclofenac. 

- Sublethal effects start from 0.16 mg/L Diclofenac. 

 

3.2.2 Introduction 

Diclofenac (DCF) is the most frequently detected drug in German surface waters. It has been measured 

in concentrations of up to 29.8 µg/L in 55 countries (Dusi et al., 2019). Different harmful effects have 

been described for non-target organisms. Concentrations as low as 1 µg/L have shown negative effects 

on the liver, kidney and gills of rainbow trout (Oncorhynchus mykiss, (Triebskorn et al., 2004), and the 

survival, growth and reproduction of Daphnia magna is reduced from concentrations of 0.4 mg/L (Du 

et al., (2016). 
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As a “keystone species“ and “ecosystem engineers“ (Weinländer and Füreder, 2016) freshwater 

crayfish are a central element of benthic ecosystems. During development, their sensitive embryos are 

directly exposed to potentially harmful chemicals dissolved in surface waters for months (Khan and 

Nugegoda, 2007). They rely on diffusive transport for gas and nutrition exchange during embryonic 

development (Reiber, 1997) and so they can be influenced by potentially harmful substances.  

We therefore hypothesized that DCF has an influence on survival rate, embryonic development time, 

weight increase and histological effects on the hepatopancreas of freshwater crayfish embryos. The 

crayfish hepatopancreas is typically formed of numerous tubules separated by connective tissues (Abd 

El-Atti et al., 2019) and consists of lumen, membranes and four types of epithelial cells: resorptive lipid 

cells (R-cell) for nutrient intake, blister-like secretory cells (B-cell) to channel off harmful substances, 

fibrillar cells (F-cell) as connecting tissue and embryonic cells (E-cell). Consequently, changes in R-cells 

would indicate a higher or lower intake of nutrients, changes in B-cells would indicate a higher or lower 

outtake of harmful substances, whereas changes in the other two types would indicate problems in 

the individual’s biosynthesis. 

We used the European native species Astacus astacus. It was once widespread in European surface 

waters until the crayfish plague as well as structural and chemical changes in surface waters nearly 

eradicated this species. The noble crayfish is very suitable for our study due to its natural habitat (lower 

sections of streams, lakes etc.) which is often influenced by agricultural drainages and sewage (Skurdal, 

J. and Taugbøl, T., 2002). We carried out the same study with marbled crayfish embryos (Procambarus 

virginalis). One female marbled crayfish can produce up to 700 eggs every 8–9 weeks. The offspring is 

genetically identical due to its parthenogenetic reproduction strategy (Chucholl and Pfeiffer, 2010; 

Vogt et al., 2004). These facts provide a predictable and continuous supply of clonal eggs, making this 

species a suitable model organism for higher invertebrates in the laboratory (Hossain et al., 2018; Vogt, 

2018).  

3.2.3 Material and methods 

We obtained parental noble crayfish from a commercial hatchery in Schleswig-Holstein, Germany 

(Oversee crayfish farm). Fifteen females and six males were kept in three 600 litre aquaria during 

mating time at 8 °C and a light regime of L:D = 10:14. They were fed frozen midge larvae and peas ad 

libitum. Females were checked for eggs daily from the end of November onwards. The experiments 

started 72 hours after egg deposition. The reproduction strategy of marbled crayfish made it easier to 

obtain a large number of eggs. Twelve animals were kept separated in 25 Litre aquaria at 23 °C with a 

light regime of L:D = 10:14. The marbled crayfish were fed the same diet as the noble crayfish. These 

conditions allow us to obtain eggs from every individual marbled crayfish every 8–9 weeks. As with 

noble crayfish, we started experiments for marbled crayfish 72 hours after egg deposition. 
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For the experiments, we equally filled 10 wells of 5ml-multititer plates (Greiner bio-one, 

Kremsmünster, Austria) with 0.75 mL of a mixture of tap water and deionized water at a ratio of 2:1. 

The mixture was autoclaved and aerated beforehand to ensure an oxygen-saturated and germ-free 

environment for embryos. Prior to the start of the experiment, 0.75 mL of deionized water with a 

specific concentration of DCF was added. Subsequently, we transferred one egg per well into each well 

of twelve microtiter plates. Each plate contained all of the nine concentrations of DCF we used in our 

experiments, and additionally one zero and one solvent (Ethanol: ETH) control. The concentrations 

used in the experiments were chosen to cover a wide range from concentrations occurring in surface 

waters to concentrations known to have an effect on other animal groups (Dietrich et al., 2010; Han 

et al., 2006) and are shown in table 3.4.   

Table 3.4: Concentrations of DCF and numbers of replicates/embryos per species. 

Concentration [mg/L] 0.0 ETH 0.01 0.04 0.16 0.64 2.56 10.24 40.96 

P. virginalis [n] 36 36 36 36 36 36 36 36 36 

A. astacus [n] A1 

 

16 16 16 16 16 16 16 16 16 

A. astacus [n] A2 

 

16 16 16 16 16 16 16 16 16 

A. astacus [n] A3 

 

16 16 16 16 16 16 16 16 16 

 

We placed the microtiter plates on a laboratory shaker (Dual–Action shaker KL 2, Edmund Bühler 

GmbH, 72411 Bodelshausen, Germany) with 60 movements per minute to ensure a constant supply of 

oxygen and simulate parental movement of the abdomen. We changed the experimental solutions 

daily via pipetting to maintain optimum water quality. 

We recorded developmental stages and mortality three times per week. This was possible thanks to 

the transparent membrane of crayfish eggs that enabled us to examine the status of the living 

embryos’ development under a binocular. We transferred the developmental stages described in 

(Sandeman and Sandeman, 1991), for noble crayfish and (Alwes and Scholtz, 2006), for marbled 

crayfish, to standardized percentages to generate direct comparability of the embryonic development 

of the two species. 

Differences in development time of marbled crayfish (486-540 degree days (Seitz et al., 2005)) and 

noble crayfish (1900 degree days (Kozák, 2015; Skurdal, J. and Taugbøl, T., 2002)) were balanced by 

choosing exposure times of between 13 and 16 days for both species. The last period was carried out 

until the first moult of juvenile crayfishes. The embryonic development of marbled crayfish was fully 

complete by this time. For noble crayfish, we conducted the experiment for three different parts of 
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the embryonic development. Hereinafter, these first, second and third periods will be called A1, A2 

and A3. 

To avoid observer-biased data recording, the person observing did not know the respective 

assignments of eggs and concentrations. The experiments were terminated after the first moult of 

juvenile crayfish. At that time, the fresh weight of the moulted animals was measured (Sartorius 

Research R160 P, Sartorius GmbH, Göttingen, Germany). 

3.2.3.1 Chemicals 

We purchased DCF (Tokyo Chemical Industry Co. Ltd., Tokyo, Japan) in 99.5 % purity. Due to its low 

solubility in water (5 mg/L in 20 °C) DCF was first dissolved in Ethanol (ETH). To exclude any effects of 

ETH on the embryos we also included a control group with this solvent. 

3.2.3.2 Histology 

For histological assessment we fixated three noble crayfish per concentration in buffered 

formaldehyde (3.7 %) directly after the first moult. For decalcification, we stored the crayfish in 

Kristensen solution for two weeks as described in the LR white user’s handbook, to ensure the 

complete decalcification of the exoskeleton. The samples were embedded in LR White (LR White acrylic 

resin, hard, Sigma-Aldrich, Germany) and hepatopancreas sections of two µm thickness were made 

using an ultramicrotome. The sections were stained with haematoxylin and eosin (HE) with an 

extended exposure time, in accordance with the LR White usage instructions. These tissue samples 

were examined under a light microscope combined with a camera system (Leica DM1000 LED, Leica 

ICC50 HD, Leica Application Suite Version 3.0.0, Leica Microsystems CMS GmbH, D-35578 Wetzlar, 

Germany). The examination of hepatopancreas cells included the observation of membrane damage, 

damage in the four different cell types, as well as changes in size and number of the four different cell 

types. For this procedure, 10 sections per individual were photographed and subsequently analysed 

by counting and measuring cells under the microscope.      

3.2.3.3 Statistical methods 

We performed all statistical analyses using R version 3.2. (R Core Team, 2015). The weight and number 

of B-cells were tested for normality and equal variances prior to analysis. If these criteria were fulfilled, 

a one-way ANOVA (variance analysis) and post hoc Tukey test were performed. The LC50 values 

(medium lethal concentrations) were first corrected following Abbott’s method and then estimated 

utilizing the trimmed Spearman Karber method. Survival rates were analysed using the Kaplan-Meier 

survival analysis of Gehan Breslow and the groups were compared via the Holm-Sidak method. The 

embryonic development was analysed via linear regressions. Thanks to good correlation values (> 0.8) 

the linear regressions were compared with an ANCOVA (covariance analysis). Pictures were analysed 

with GIMP software (version 2.8, Fa. the Gimp Team). 
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3.2.4 Results 

3.2.4.1 Lethal effects 

The survival rates of the marbled crayfish are shown in Figure 3.7. Overall, the survival of embryos was 

between 5 % and 36 %. Embryos of P. virginalis exposed to concentrations of 10.24 mg/L and higher 

showed a significantly lower survival rate than the control groups (Holm-Sidak, p ≤ 0.03). The 

estimated LC50-value over 15 days was 13.96 mg/L (SE = 3.86). 

 

Figure 3.7: Survival rates of marbled crayfish exposed to different concentrations of DCF over time. 

Overall, the survival of noble crayfish embryos was higher than for marbled crayfish. Similar to marbled 

crayfish, survival rates of noble crayfish were significantly lower for concentrations of 10.24 mg/L and 

higher (Holm-Sidak, p ≤ 0.007). These differences were only observed in group A3 (Figure 3.8). During 

this developmental period, hatching takes place so that the effects of DCF on the survival of noble 

crayfish are linked to latest stage of embryonic development and hatching. An LC50-value of 19.56 mg/L 

(SE = 5.22) was estimated for this group.   
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Figure 3.8: Survival rates of noble crayfish exposed to different concentrations of DCF over time in first (A1), second (A2) and 
final (A3) third of development.  
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3.2.4.2 Sublethal effects 

3.2.4.2.1 A comparison of the weight 

weight of both crayfish species after the first molt did not reveal any differences between the different 

treatments (all p>0.05).  

3.2.4.2.2 Embryonic development time 

A comparison of the development time of the marbled crayfish revealed major differences between 

treatments (Figure 3.9). From concentrations of 0.16 mg/L and higher, embryonic development was 

slower than in the control group (ANCOVA, p = 0.047). The time until 70 % of development was 

completed varied between 13 days for the control groups and 18 days for the treatment group exposed 

to 10.24 mg/L DCF. Embryos exposed to the highest concentration did not develop further than 69 % 

on average. 

 

Figure 3.9: Linear regression of embryonic development of marbled crayfish exposed to different DCF concentrations over 
time. 

 

In noble crayfish, there were no differences in development between group A1 and A2, but in group 

A3 the development of embryos exposed to DCF concentrations of 0.16 mg/L and higher was retarded 

compared to the control groups (p = 0.019) (Figure 3.10). By day 43, all embryos of the control groups 

had hatched. Embryos exposed to 0.16 mg/L DCF hatched after 46 days and embryos exposed to the 

highest concentration of DCF did not develop until hatching. 
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Figure 3.10: Linear regression of embryonic development of noble crayfish exposed to different DCF concentrations over time 
in the first (A1), second (A2) and final(A3) third of development. 

3.2.4.2.3 Histology 

Figure 3.11 illustrates the effects of DCF on the hepatopancreas structure of A. astacus. The average 

number of B-cells in the H2O control group is 24.6 ± 2.4 (n=30). All sections of concentrations of 

2.56 mg/L and higher showed a higher number of B-cells and enlarged B-cells compared to the control 

groups (post hoc Tukey, p<0,001). In hepatopancreas sections of embryos exposed to concentrations 

of 40,96 mg/L 41.9 ± 9.8 (n=30) B-cells per section were recorded. These cells were estimated to be 
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30 % larger than B-cells in the control groups. Additionally, no disruption of the membrane occurred 

in the control groups, whereas we observed disruptions at concentrations of 0.64 mg/L DCF in 20 % of 

all sections. At concentrations of 1.6 mg/L and higher, this membrane damage was present in every 

section. 

 

Figure 3.11: Histological sections of the hepatopancreas in juvenile noble crayfish (Astacus astacus) exposed to DCF. Ⅰ – 

control showing the lumen (L), membrane (M) and four types of epithelial cells: resorptive (R) lipid cells, blister-like (B) 

secretory cells, fibrillary (F) cells and embryonic (E) cells; Ⅱ – group exposed to 0.64 mg/L DCF; Ⅲ – group exposed to 

2.56 mg/L DCF; Ⅳ – group exposed to 40.96 mg/L DCF (HE, 200×). Top row: close up of one tubular. Bottom row: overview of 

hepatopancreas structure 

3.2.5 Discussion 

The purpose of all types of non-steroidal anti-inflammatory drugs (NSAIDs) including DCF is to decrease 

the production of thromboxanes and prostaglandins (Satoh et al., 2015) in order to reduce pain, 

inflammation and fever. With 3,996 positively detected environmental concentrations on the watch 

list of the database “Pharmaceuticals in the environment” (UBA, German Environment Agency; Dusi et 

al., 2019), it is considered a “contaminant of emerging concern” and was included in the previous 

watch list of EU Decision 2015/495 (Sathishkumar et al., 2020). This high incidence shows the relevance 

of understanding the effects of this drug on non-target organisms.  

Comparison of the two species 

With respect to the assessed parameters, the effects of DCF on embryos of the two species were very 

similar. The LOEC for lethality and embryonic development were identical and LC50-values were 

comparable. Therefore, we conclude that marbled crayfish can serve as a model organism for endemic 

crayfish concerning the effects of DCF. The suitability of marbled crayfish as a model organism for a 

broad range of biological disciplines is described by Vogt (2018) and Hossain et al. (2018). Both reviews 

claimed that marbled crayfish are organisms that can be used for studies in epigenetics and 

developmental biology as well as physiological, ecotoxicological and ethological research. Buřič et al. 

(2018) used P. fallax to assess the effects of an opioid painkiller (tramadol) and an antidepressant drug 
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(citalopram) on behavioural patterns. The marbled crayfish has even been used as a model for the 

neural and molecular mechanisms of drug addiction, (Jackson and van Staaden, 2019). This shows that 

marbled crayfish are already being used as model organisms. Nevertheless, not every observed effect 

on marbled crayfish is transferable to other species. Marbled crayfish can show a lower sensitivity to 

environmental factors, especially during embryonic development. The short embryonic development 

of marbled crayfish (Vogt and Tolley, 2004) leads to a shorter exposition time during this vulnerable 

period. Additionally, Vogt (2010) described marbled crayfish as tolerant towards a wide range of 

environmental conditions for long periods of time. Considering the results of Rubach et al. (2011), who 

demonstrated that freshwater arthropod species can be highly variable in their dynamic response to a 

particular stressor, it is reasonable that the suitability of the marbled crayfish as a toxicological model 

organism is dependent on the chemical compound used. Nevertheless, effects are transferable to 

other species, but the dose at which an effect occurs might differ.  

3.2.5.1 Lethality of Diclofenac 

There have been few investigations into lethal concentrations of DCF for crustaceans and, to our 

knowledge, none for crayfish. Data are only available for the water flea Daphnia magna 

(LC50 = 56.6 mg/L–94.1 mg/L (Quinn et al., 2011; Ra et al., 2008), the mysid Sirella armata 

(LC50 = 0.01 mg/L–2.91 mg/L (Pérez et al., 2015)) and the copepod Tisbe battagliai (LC50 = 15.8 mg/L 

(Schmidt et al., 2011)). These results are within the range of the observed values for crayfish in this 

study. It is notable that the commonly used organism for risk assessments, Daphnia magna, shows the 

highest LC50 of all four organisms and therefore shows a very optimistic estimation of the hazardous 

effects of DCF. However, there are plenty of examples of the toxicity of DCF on fish. For example, the 

zebra fish Danio rerio showed an LC50-value of 5.3 mg/L (van den Brandhof and Montforts, 2010). 

Zhang et al. (2020) showed for embryos of this species that Diclofenac led to the inhibition of 

spontaneous muscle contractions and a decreased hatching rate of zebrafish embryos at a 

concentration of 24.1 µg/L. The deviation in these lethal concentrations compared to crustaceans, 

despite the larger body volume, can be explained by bioaccumulation in tissue. Several authors have 

reported that DCF can accumulate in fish, even though reported bioconcentration factors differ greatly 

between species (Brown et al., 2007; Cuklev et al., 2011; Fick et al., 2010; Schwaiger et al., 

2004).Transferred to freshwater crayfish, DCF would most likely accumulate in muscle and 

hepatopancreas tissue and therefore could show even more drastic effects over time. The toxicity of 

DCF is additionally dependent on pH. At lower pH the mortality increases (Alsop and Wilson, 2019). 

Nevertheless, lethal concentrations of DCF are multiple times higher than the highest monitored DCF 

concentration worldwide (Sousa et al., 2018). Therefore, indirect effects of DCF on fitness are more 

likely to have an impact on population dynamics. 
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3.2.5.2 Sublethal effects of Diclofenac  

Mohd Zanuri et al. (2017) showed effects of DCF on sperm activity of important components of the 

marine benthos in concentrations lower than 0.1 µg/L. In addition to the effects of DCF, mixtures 

with other chemicals introduced to surface waters can increase the negative effects of this 

analgesic (Gonzalez-Rey et al., 2014; Prokkola et al., 2015). Sublethal effects of DCF on freshwater 

crayfish were observed from concentrations of 0.16 mg/l and higher. These low effective 

concentrations support the statement made by Fent et al. (2006) that DCF seems to be the compound 

having the highest acute toxicity within the class of NSAIDs. Even though the weight of hatched crayfish 

did not decrease when exposed to DCF, the increased developmental time of the crayfish due to DCF 

exposure can have a negative effect on population dynamics. For natural populations, late hatching 

can have massive influences as later hatching leads to a later start of feeding and therefore slower 

growth of the respective cohort. These individuals have a lower survival potential due to lower feeding 

success and increased mortality through predation as shown for marine fish (Franke and Clemmesen, 

2011). The sublethal effects described in this study are only one example of the expectable effects of 

DCF. For example, Gonzalez-Rey and Bebianno (2014) showed that concentrations as low as 0.25 µg/L 

can lead to biomarker responses in muscles. These or other unknown effects could also be present in 

crayfish muscle tissue.  

3.2.5.2.1 Histology 

The hepatopancreas in decapods is the site of nutrient absorption, digestion, synthesis and secretion 

of digestive enzymes and reserve storage (Calvo et al., 2011; Johnston et al., 1998; Xiao et al., 2014). 

For this reason, the tissue is used for monitoring the health of crayfish and can indicate diseases and 

exposure to harmful substances (Velisek et al., 2017; Xiao et al., 2014). Changes in B-cells indicate a 

higher or lower outtake of harmful substances. The observed changes in B-cells can therefore be 

explained by a greater need to lead off the chemicals. The damaged membranes, on the other hand, 

can interrupt this mechanism. The overload of this system can therefore explain other sublethal and 

lethal effects of DCF on these animals. When the extrusion of harmful substances is disrupted due to 

hepatopancreatic damage, the harmful effects on development, growth and survival can occur 

unimpeded.  

There are currently no data in literature describing the effects of DCF on the hepatopancreas of 

crayfish. Nevertheless, influences on the organ by human medications have been reported before: 

Wren and Gagnon (2013) showed membrane damage and size changes of cells in the hepatopancreas 

of Orconectes virilis exposed to platinum group metals commonly used for industrial and biomedical 

purposes at 5 mg/L after ten days. They also showed a high bioaccumulation in hepatopancreas tissue 

with 81.68 mg/g in a concentration of 1 mg/L platinum group metals. Marenkov et al. (2016) showed 
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influences of the drug Albuvir on the hepatopancreas and weight of marbled crayfish at 0.01 % 

solution. The results of the investigation of the hepatopancreas show the wide range of sublethal 

effects on freshwater crayfish and leads to the assumption that other effects are possible and should 

be investigated in future studies.  

3.2.6 Conclusion 

This study shows that marbled crayfish can be used as model organisms for investigations concerning 

the effects of DCF on noble crayfish. Furthermore, we were able to show that the non-steroidal anti-

inflammatory drug has a negative influence on the embryos of freshwater crayfish. Though the 

reported effective concentrations are unlikely to be found in surface waters, the mixture of DCF with 

other introduced chemicals might reduce the effective doses of the pharmaceutical. Additionally, the 

source of DCF is continuous due to sewage treatment plants, so that the exposure time is endless. 

Therefore, effects on population dynamics are possible and should be investigated in the future. 
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4 Influences under outdoor conditions 

Studies conducted under laboratory conditions can generate reproduceable results without the 

influence of uncalculatable factors. Therefore, the previously described manuscripts can show the 

exact influences of the two tested chemicals. Under outdoor conditions, water parameters and present 

chemicals are constantly changing so that these laboratory experiments cannot represent exact actual 

influences of the two chemicals. For this reason, we conducted a field study to determine the effects 

of chemical intrusion of a surface water stream.  

4.1 Freshwater crayfish in field experiments: design and efficiency of three novel 

enclosures 

To examine the influences of actual inputs under real conditions to embryonic freshwater crayfish, a 

suiting method for outdoor experimental setups had to be established. For this reason, a small study 

was conducted to test three different experimental enclosures and their practicability in field 

experiments. The study is described in the following manuscript. This manuscript is submitted to the 

“International Journal of Aquatic Research and Education”. 
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4.1.1 Abstract 

Increasing anthropogenic influences on ecosystems such as aquatic habitats have severe 

consequences. Not only are they reducing aquatic biodiversity but thereby also degrading the 

ecosystem services we depend on. In this context, keystone species are of particular importance for 

the function of freshwater ecosystems. To assess the effects of pollutants and other man-made 

disruptions on keystone species such as freshwater crayfish, outdoor experimental setups are 

essential. One option is the use of enclosures to place crayfish in outdoor surface waters in order to 

monitor the activity and performance of the animals at any given time. However, not every type of 

enclosure is suitable for keeping crayfish in their natural habitat, in particular egg-carrying crayfish, 

without impacting on the embryogenesis and the physical integrity of adults and juveniles. Therefore, 

we have developed three new enclosure designs and compared their efficiency with two control 

groups in order to find the most suitable construction with the least impact on the experimental 

organisms and their offspring. In this study, we compared the performance of female noble crayfish 

(Astacus astacus) and their embryos in three different outdoor enclosures exposed in a pond and, for 

comparison, in a cycle aquaculture system and a hatchery. The study showed that animals in a floating 

construction made of wood and wire fence with a mesh size of 8 mm have a survival rate and 

development time of the crayfish embryos comparable to animals under optimum conditions. 
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4.1.2 Introduction 

Interactions between stressors, water quality, flow velocity, habitat structure and many more factors 

can have a high impact on research results. In their review, Calisi and Bentley (2009) highlighted the 

general need for field experiments in addition to laboratory experiments, as the data from the 

laboratory experiments often differ from or even contradict the findings in natural complex biological 

systems. To estimate the effects of individual stressors in the context of environmental influences it is 

necessary to transfer predictions from laboratory environments to outdoor experiments. The observed 

effects can range from behaviour, feeding, levels of food chain and pathogenic load to environmental 

changes. The usage of enclosures is an established method to create controllable conditions for in situ 

studies concerning aquatic animals (Marchetti Maroneze et al., 2020; Nichols et al., 2019; Yin et al., 

2017). However, data quality is dependent on the suitability of the experimental design. Therefore, 

the used methods have to be evaluated.  

Especially in situ experiments of freshwater crayfish are of great interest due to the major influence of 

these animals on their habitat. Because of their omnivorous diet they have an impact on every trophic 

level, and as the biggest invertebrates of freshwater habitats they affect the overall benthos structure 

(Kettunen, M. & ten Brink P., 2006; Nyström, P.,2002). For that reason, freshwater crayfish reached 

the status of keystone species (Skurdal, J. and Taugbøl, T., 2002). Local or functional extinction as well 

as a decrease of populations of keystone species, to the point that they no longer contribute to 

ecosystem processes, can have dramatic impacts on ecosystem services (Kettunen, M. & ten Brink P., 

2006) . 

Stress factors of limnic habitats are especially dangerous during the reproduction period of crayfish 

and their embryonic development. This is due to the naturally higher sensitivity of embryonic and 

juvenile organisms (Khan and Nugegoda, 2007) and the reproduction strategy of crayfish. As these 

animals carry their eggs under their abdomen (pleon) for months, the embryos are directly exposed to 

external stressors. 

Influences of environmental chemicals on freshwater crayfish are increasingly becoming the focus of 

laboratory experiments (Buřič et al., 2018; Sohn et al., 2018; Stara et al., 2018). Yet very little is known 

regarding the influences in their natural habitat or even embryonic development. To obtain significant 

and independent results from field experiments involving the use of any form of artificial enclosure, it 

is relevant to estimate the impacts of the enclosure itself on the organism. 

To observe effects of stressors on crayfish and the early life stages of their offspring in contaminated 

waters, we designed three different outdoor enclosures. Ideal enclosures should minimize stress for 

the study animals, but maximize interaction with the environment and must also be easy to handle for 
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the observer. The designs were based on existing enclosures used in other studies involving freshwater 

crayfish, all of which used small mesh sizes and were placed in benthic regions of water bodies. 

(Albertson and Daniels, 2018; Chucholl, 2013; Jussila et al., 2011; Mueller and Bodensteiner, 2011). 

Jussila et al. (2011) used a wooden construction to investigate latent crayfish plague (Aphanomyces 

astaci) infection in a robust wild noble crayfish population. The exact structure of these enclosures 

however, has not previously been described, so that the study at hand will provide first evaluated and 

detailed designs for future studies. Requirements for the designs used in this study were the possibility 

of constant water exchange and an active interchange with the environment. These characteristics 

made the designs suitable for experiments studying environmental parameters such as oxygen, 

nitrogen and other water parameter. and the impact of pollutants or pathogens on the survival, growth 

and development of crayfish during embryonic development in particular.  

This research was conducted in order to develop an enclosure method with which the effect of the 

selected parameters can be estimated, while facilitating the handling and minimizing the stress 

exposure on the animals. 

4.1.3 Material and Methods 

4.1.3.1 Study animals 

We used noble crayfish females obtained from “Krebszucht Oeversee, Germany” and originated from 

Langensee in Schleswig-Holstein, Germany. All study specimens were age- two, had a carapace length 

between 38 and 47 mm and were gravid. To monitor egg development and the overall physical 

condition of females before the start of the experiment, the animals were kept in a recirculating 

aquaculture system (RAS) at the university of Kiel for 14 days under optimized conditions according to 

Bohl (1989).  

4.1.3.2 Enclosure designs  

The three enclosure designs (Figure 4.1, 4.2 and 4.3) we developed were designed on the basis of 

information from existing investigations. From these studies, we derived mesh size, size per animals 

and the overall construction methods. The final structure and materials were then complemented.  

Type A was fabricated after the model of Jussila et al. (2011). It was made of 1.8 cm strong Paulownia 

wood, which is water resistant and has a low density. This results in a floating enclosure. The sides are 

covered with wire fence of 8 mm mesh size and the top cover is hinged. The construction of this 

enclosure type took about three hours each.  
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Type B is the simplest design of the three and is similar to the design Mueller and Bodensteiner (2011) 

used. It is made of 8 mm mesh size wire fence and cable ties. The build time took about 15 minutes 

each. This type is placed on the bottom of the lake.  

Type C is a modified version of the enclosures used in the study of Chucholl (2013). It is made of a 

wooden frame which is covered with nylon gauze with a 1.5 mm mesh size. The top cover mesh is 

removable thanks to a clip system. Construction took about 35 minutes each. This type is also placed 

on the bottom of the lake. All types were equipped with clay pipes for shelter which also functioned 

as weights to keep the enclosure in place in the pond. Additionally, the enclosures can be fixed in place 

using weights. All materials were obtained in a local hardware store.  

 

 

 

A 

 

B 

 

Figure 4.1: Enclosure type A: 60 x 25 x 25 cm (L x W x H), wooden top and bottom (Paulownia wood, 1.8 cm thickness), hinged 
top cover, sides covered with wire fence (8 mm mesh size), 2 clay pipes placed inside, construction balanced with weights to 
float just below the water surface. 

Figure 4.3: Enclosure type B: 70 cm side length and 22 cm diameter, tubular enclosure made of wire fence (8 mm mesh size), 
2 clay pipes placed inside, construction placed at a depth of 1.30 m. 

C 

 

Figure 4.2: Enclosure type C: 60 x 25 x 25 cm (L x W x H), wooden framework, sides covered with gauze (1.5 mm mesh size), 
removable top cover by means of built-in clip system, 2 clay pipes placed inside, construction placed at a depth of 1.30 m. 
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4.1.3.3 Experimental Design 

In the field test, we compared five treatment groups, each with six adult egg-carrying Astacus astacus 

(Table 4.1). The initial embryonic stage in all groups was observed at approximately 40 % embryonic 

development (Alwes and Scholtz, 2006; Sandeman and Sandeman, 1991). Starting from the end of 

April, the three groups (A, B, C) were kept outdoors in a semi-intensive aquaculture pond system in 

the Oeversee Crayfish Farm in the different enclosures, one animal per enclosure (Figure 4.1). One 

group (D) was kept in a CAS in a single 610 litre tank, with similar environmental parameters but under 

controlled conditions. These six females were fed with Chironomidae larvae, stonewort and peas ad 

libitum. For another trial group (E), we transferred the eggs, stripped from female crayfish, to a 

hatchery to eliminate the maternal influences. This hatchery, with a total volume of 150 litres, was 

equipped with a degassing unit, UV-clarifier, aeration system and a motor providing movement of the 

eggs. The CAS and hatchery groups served as controls. 

 

Table 4.1 Summary of treatments and their parameters 

Treatment Site Materials Purpose Number Crayfish 

A Crayfish farm Enclosure out of 

wood and wire  

Experimental 

treatment 

6 egg-carrying 

females 
B Crayfish farm Enclosure out of 

wire 

Experimental 

treatment 

6 egg-carrying 

females 

C Crayfish farm Enclosure out of 

wood and gauze 

Experimental 

treatment 

6 egg-carrying 

females 
D Laboratory CAS control 6 egg-carrying 

females 
E Laboratory Hatchery control 6 egg-carrying 

females 

 

Overall, six enclosures per type and 18 in total were used. To establish the best method that provides 

ideal conditions to keep the animals in outdoor experiments, we compared the embryonic 

development rate, the weight of hatched crayfish and the survival of hatchlings. To track the 

development, 2–3 eggs per individual and week were collected and the developmental stage was 

assessed according to (Alwes and Scholtz, 2006) and converted into percentages of embryonic 

development. The survival rate of the embryos was calculated by counting the number of eggs carried 

per animal at the start of the experiment and the number of resulting hatchlings at the end. Eggs 
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attached to animals were counted twice directly on the animals. This had to be done fast but also the 

number of the two counting should not differ. Otherwise a third counting would have to be made. This 

however did only happen twice. One time for the control and one time for enclosure C. Separated eggs 

are not capable of surviving due to the lack of movement and the resulting oxygen deficit. The study 

was terminated when all embryos hatched. The weight of 12 randomly selected juveniles per adult 

was measured immediately after hatching in all treatment groups was completed. To avoid any 

influence of the exact location in the pond on the results, we chose six evenly spread locations, which 

were each stocked with each type of enclosure. Continuous data loggers for temperature and light 

(HOBO Pendant temp/light (Onset Computer Corporation, Bourne, USA)) were installed at each of the 

six locations and one oxygen logger (HOBO Dissolved Oxygen Logger (Onset Computer Corporation, 

Bourne, USA)) was installed in the centre of the locations. The temperature and light regime in the 

control groups in the hatchery and the CAS was adjusted to that given in the outdoor experiment. 

Oxygen in the controls and pH in all treatment groups were measured with multi-parameter probes 

(WTW Oxi 3310 and WTW pH 3310, Xylem Analytics Germany Sales GmbH & Co. KG, WTW Weilheim, 

Germany) and nitrite, nitrate and ammonium concentration with a photometer (DR 5000 Hach Lange 

GmbH, Düsseldorf Germany). All parameters were measured once a week. 

4.1.3.4 Statistical analysis  

All statistical analyses were performed using SigmaPlot 13 (Systat Software, Inc., San Jose, USA). Data 

on survival, temperature, embryonic development and weight were tested for normality and equal 

variances prior to analysis via the Levene and Shapiro-Wilk test. If both were given, a one-way ANOVA 

was performed for weight and temperature. For non-parametric data, a Kruskal-Wallis test was used. 

The embryonic development was analysed via linear regressions. Due to good correlation values 

(R2 > 0,9) the linear regressions were compared with an ANCOVA (Analysis of covariances). The 

correlation of embryo survival and maternal carapace size was tested with Spearman Rank Order 

Correlation. 

4.1.3.5 Authorization 

 The official authorization for this study with live animals was obtained by the “Ministerium für 

Energiewende, Landwirtschaft, Umwelt, Natur und Digitalisierung Schleswig-Holsteins“ (MELUND). 

4.1.4 Results 

4.1.4.1 Adult animals 

Hatching time took from 33 days (group E) to 36 Days (group C). Within the experiment, five out of 

thirty adult crayfish died in their treatments. Three of them were held in enclosure type B and two 

were held in the CAS as control group. This leads to a total mortality of 50 % for group B and 33.33 % 
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for group D. Additionally, one female from group A and one from group C escaped during the 

experiment due to material failures. Six of these seven eliminated females died or escaped within the 

first five days, so we replaced them immediately.  

4.1.4.2 Embryonic Development 

The embryos’ survival rates in all treatments were above 50 %. The different treatments do not show 

any significant differences, but very large standard deviations of up to 28.8 % (Figure 4.4). 

To verify that the observed differences in the embryonic survival rates can be treated irrespectively of 

the body size of the maternal crayfish we tested the maternal body size and the survival rate of the 

related embryos for correlation. No significant correlation (p = 0.888, adjusted R2 = -0.03496) was 

found, thus, it was assumed that the survival rate is mainly affected by different treatments.  

At the start of the experiment, all embryos were at a developmental stage of 40 % and were observed 

for five weeks of their development until hatching. The fastest development took 33 days (hatchery) 

and the slowest 36 days (enclosure type C). During this time, the crayfish embryos diverged in their 

pace of development. Linear regression analysis of embryonic development (Figure 4.5) showed a 

significantly faster development of embryos in enclosure type A compared to the other enclosures 

(p < 0.05), but not to the control group in the hatchery (E) (p = 0.633). 

Figure 4.4: Survival rates of A. astacus embryos in different enclosures (A, B, C) and control groups (D = CAS, E = hatchery); 
mean ± SD 
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Figure 4.5: Comparison of embryonic development [%] in the different enclosures (A, B, C) and the control groups (D, E). 

The treatment group in enclosure A showed similar degree days to the control groups (group D and E), 

whereas the enclosure group C showed significantly higher degree days than both control groups 

(p < 0.007) and group B had significantly higher degree days than control D (p = 0.019). Comparing only 

the enclosure treatments, group C had significantly higher degree days than A (p = 0.013)(Table 4.1). 

 

Table 4.1: Indication of the average water temperature, mean development days and degree days of embryos in enclosure A 
(A), enclosure B (B), enclosure C (C), the CAS (D) and the hatchery (E), n = 6 per treatment 

Group A B C D E 

temperature (± SD) 19.23 (± 3.73) 18.94 (± 3.60) 
19.14 

(± 3.63) 
17.91 (± 3.08) 19.71 (± 1.70) 

development days (± 

SD) 
34.00 (± 1.31) 35.50 (± 1.04) 36.00 (± 0.0) 35.67 (± 0.44) 33.00 (± 0.0) 

degree days (± SD) 653 (± 27.24) 672 (± 21.18) 689 (± 0) 638 (± 8.44) 650 (± 0) 

n (hatched juveniles) 460 453 420 547 373 
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The median weights of hatched crayfish varied from 22.1 mg ± SD 3.2 in enclosure C to 24.4 mg ± 0.19 

in the hatchery (E) (Figure 4.6). The statistical analysis confirmed a higher weight of the hatchery 

control (E) than all other groups except for group A (p = < 0.001). Juveniles in enclosure A in turn 

showed a significantly higher weight than individuals in enclosure C (p = 0.017).

 

Figure 4.6: Comparison of treatment groups in boxplots, indicating the weights [mg] of the A. astacus juveniles after first 
moult. The lines in the boxes indicate median values, the lines above and below the boxes indicate standard deviations, and 

dots represent outliers. 

4.1.5 Discussion 

We detected that, of the three compared enclosures, a floating enclosure with a wide mesh size 

produces good results in terms of the embryo’s survival, development and weight gain. Literature 

shows that enclosures in past studies were often quite varied in their measurements, mesh size and 

crayfish biomass content (Albertson and Daniels, 2018; Chucholl, 2013; Jussila et al., 2011; Mueller and 

Bodensteiner, 2011) 

Fifty percent of the adult animals placed in enclosure B died within the first week of the experiment 

and had to be replaced. Even though no statistical test was performed, as the number of animals was 

too low, it leads to the assumption that enclosure design B might increase the stress level in the 

maternal animals, therefore resulting in a higher maternal mortality rate and consequently in fewer 

juveniles.  

 (Cukerzis et al., 1979) stated that one A. astacus female can produce 10–15 young crayfish 

under natural conditions, while a breeding experiment obtained 40 juveniles per female. Later 

(Pursiainen et al., 1983) reported a mean output of 60–80 stage 2 juveniles per noble crayfish female 
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in culture and (Mackeviciené et al., 1997) obtained mean offspring numbers of 22.4 to 70. In this study, 

one female produced an average of 66.55 stage 2 juveniles (A: 71.16; B: 75.50; C: 53.00) and 70.19 in 

the control groups (D: 78; E: 62). Therefore, this study’s data provided very convincing results, as the 

reproduction of the tested animals was similar described in previous studies (Kozák et al., 2007; Policar 

et al., 2004; Policar et al., 2006).  

The pace of embryonic development between the experimental groups started to differ eight days into 

the experiment, which corresponded with the time when the outdoor water temperature started 

rising. The speed of the embryonic development was fastest in enclosure A. According to (Westin and 

Gydemo, 1986) a sufficient increase of the water temperature can even reduce the developmental 

time in A. Astacus by half. This suggests that one reason for the faster development was the overall 

higher temperature in the floating design A. Nevertheless, the degree days in this enclosure type were 

the lowest, which leads to the assumption that the temperature is not the only reason for faster 

development. Most likely, it is a combination of the higher temperature and better flow conditions, 

which enhance the supply of oxygen and nutrients. Hypoxia can cause problems especially in the later 

embryonic stages (Reiber, 1997). 

The overall weights of the hatched juveniles are comparable to the literature data as (Kanta, 2007) 

showed, with weights of 0.018 to 0.025 g. The measured higher weights of the juveniles in the hatchery 

control group and in enclosure A are based on the faster embryonic development in these groups. The 

earlier hatching results in more energy from the egg yolk being left and not being used up for cellular 

respiration and therefore can be used for biomass production (Pandian, 1970)(Policar et al., 2004). 

4.1.5.1 Enclosure quality and handling 

Type A 

The design of these enclosures supported the attempt to expose the crayfish to as little stress as 

possible and the best development conditions in terms of temperature and water circulation. The large 

lid and floating construction allowed us to take samples directly in the water and made the work fast 

and precise. The wire fence stayed permeable over the whole experiment. It is indispensable to use 

water-resistant glue for the wooden panels to ensure durability. 

Type B 

This design was more durable than the first one, but treatment and sampling were more complicated. 

The enclosure’s openings on the long side made it difficult to reach the animals and had to be reclosed 

with zip-ties every time after sampling. This resulted in a longer handling time and therefore led to 

more stress for the maternal crayfish. 
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Type C 

The design of enclosure type C was as easy to use as type A. The weak point of this design was the 

small mesh size of the gauze, which already overgrew with algae in the first week of use. This led to an 

accumulation of sludge inside the enclosure. In addition, the gauze of one enclosure tore apart during 

the experiment resulting in the escape of one animal. 

Not only the applied measurable parameters indicate the advantage of enclosure type A, but its quality 

and handling also proved to be the best of the three tested designs. The large hinged cover and the 

option of not having to lift the enclosure out of the water for sampling reduced the handling time and 

made it less stressful for animals and handlers. The large mesh size prevented the enclosure from 

clogging with algae. In contrast, enclosure B was harder to handle because of the cover on the long 

side and design C was clogged with algae within one week as well as its gauze being quite prone to 

damage. Furthermore, the disadvantage of enclosure A’s non-water-resistant glued wood panels can 

be easily resolved by using solid wood panels. The main aim of the enclosures devised in this study is 

their suitability for experiments with adult and embryonic crayfish without substantial adverse effects 

from the accommodation itself. This research tool enables the gathering of data that are even more 

reliable against the background of predictable influences from the enclosure method. 

Almost every significant aspect considered in this experiment shows that enclosure A is the most 

suitable design type for outdoor experiments (Tab. 4.2) due to the floating design and therefore higher 

temperatures and better flow regime for the animals. Therefore, it can be recommended for use in 

future experimental setups. 

Table 4.2: Summary of all statistically significant differences found between treatments in this study p ≤ 0.05 

Compared 

treatments Temperature 

Survival rate 

embryos 

Embryonic 

development Weight 

Degree 

days 

A vs. B A = higher / A = faster / / 

A vs. C / / A = faster A = heavier A = lower 

A vs. D A = higher / A = faster / / 

A vs. E A = higher / / / / 
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4.2 Sewage treatment plants affect embryonic development of Astacus astacus 

(Linnaeus 1758) 

After the successful development of the experimental setup, the actual study to observe effects of 

chemicals introduced to surface waters was conducted. Here, sewage treatment plants can serve as a 

good example of a selective entry of chemicals. They contain substances from various origins like 

pharmaceuticals, plant protection products or industrial waste like heavy metals. The following 

manuscript shows the effects of wastewater, originating from a sewage treatment plant, on noble 

crayfish embryos under realistic outdoor conditions as an example of effects caused by human 

wastewater introductions into the habitat of the animals. 
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4.2.1 Abstract 

Pharmaceutics and agriculturally used chemicals are suspected and partially proven to have negative 

effects on aquatic organisms. Many of these compounds are not removed completely in sewage 

treatment plants. The effects on organisms or populations in the influenced areas are widely unknown. 

To address this problem, we conducted an in vitro experiment by exposing female egg-carrying crayfish 

to a river section of the Eider with influence of a sewage treatment plant. We monitored the effects of 

the wastewater residues in four groups with different distances to the entry. The results show that the 

composition of at least 26 chemicals, including high concentrations of Carbamazepin, Diclofenac and 

Glyphosate, have an influence on embryonic survival and hatching weight of the animals. The effective 

dose of the mixture is, therefore, lower than effects known by single compound investigations. 

Therefore, the results of this study demonstrate the need of an optimisation of sewage treatment 

plants to protect the endangered species Astacus astacus and, therefore, the aquatic biotic 

communities and provide representative data, which help to estimate the impacts of different 

pollution intensities on freshwater crayfish populations and, thus, on the whole ecosystem. 

4.2.2 Introduction 

In recent years, there has been growing concern about the release of organic compounds of 

anthropogenic origin, known as emerging organic contaminants, to the environment. These 

contaminants include a diverse group of thousands of chemical compounds, such as pharmaceuticals 

and personal care products, pesticides, hormones, surfactants, flame retardants, plasticizers and 

industrial additives, among others (García et al., 2020). A majority of the substances is designed to 

have effects on biological structures and is, therefore, active in their environment for a relative long 

period. As studies have shown, conventional sewage treatment plants (STPs) are inefficient in the 

removal of many biological active compounds (Bouju et al., 2016; Cacace et al., 2019; Corno et al., 

2019; Manaia et al., 2018).  

In most toxicological studies, only one single potentially harmful substance or a mixture of only few 

chemicals is investigated. It is almost impossible to artificially produce actually occurring mixtures of 

substances observed in surface waters under laboratory conditions. This is especially crucial as 

mixtures of contaminants of emerging concern may lead to more bioaccumulation and stronger effects 

than expected from only a single contaminant (Ding et al., 2016). Therefore, the only possibility to 

respond to this problem, is to investigate effects under outdoor conditions in areas influenced by STP 

and to carry out studies in the actual influenced habitats. 

The greatest relevance on the habitat are effects on organisms with a high influence on their habitat. 

The absence or presence of some animals influences several trophic levels and their structural 
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environment. One example for these “keystone species” or “ecosystem engineers” are freshwater 

crayfish due to their omnivorous diet and their building of hollows in their structural environment 

(Weinländer and Füreder, 2016). At the same time, freshwater crayfish are known to be sensitive 

towards water pollution (Haddaway et al., 2015; Kocour Kroupová et al., 2018). Early live stages, like 

embryonic development, are even more sensitive to external influences (Khan and Nugegoda, 2007). 

However, the reproduction strategy of most crayfish species leads to a potentially long exposure time 

of embryos to potentially harmful substances. Female noble crayfish, for example, carry their eggs 

outside their body under their abdomen for a period up to nine months (Ackerfors, 1999). This 

relatively long timespan may lead to a high impact of pollutants on these early developmental stages. 

Hence, the investigation of influences of pollutants on these live stages are key to understanding the 

influences of STP on, for example, crayfish populations. 

To this end, we exposed egg-carrying female noble crayfish in a river to surface waters with different 

concentrations of chemicals, originating from an STP. This procedure was intended to answer the 

following questions:  

i.:  Do chemicals that origin from STPs affect the survival of noble crayfish embryos?  

ii.:  Is the embryonic development of noble crayfish influenced by these chemicals, and  

iii.:  if yes, which concentrations show measurable effects? 

Due to dilution within a relatively short distance, the chosen study site can represent different types 

of chemically loaded surface waters and still be comparable to other environmental parameters. This 

is important to estimate influences of different intensities of pollution on freshwater crayfish 

reproduction under realistic conditions. 

4.2.3 Material and methods 

4.2.3.1 Study site  

The study was conducted in the federal state of Schleswig-Holstein, Germany, in the Eider. This river 

lays in a valley with a catchment area of 135 km2 upstream from the study site. During the last 150 

years, the upper Eider river has strongly been influenced by human activities, such as river regulation, 

drainage, mowing of macrophytes each summer and mowing and/or grazing of the adjacent fen 

grasslands (Vogt et al., 2007). In the direct study area (54°15'06.5"N 10°03'57.9"E) an influx of the local 

STP is present (Figure 4.7). This gave us the opportunity to compare embryos exposed to water 

contaminated with the output of this plant with embryos placed upstream and, therefore, without the 

influences of this plant. In this area, the river is approximately 7 m broad and between 0.8 and 1.5 m 

deep. The direct surrounding is dominated by pasture land. Effects of STP in this area can be especially 

relevant because of an autochthone genetic structure of noble crayfish found in this study site revealed 
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by (Schrimpf et al., 2014). Therefore, a loss of this population could lead to a loss of this special genetic 

structure.  

 

 

Figure 4.7: Overview of the study area. Map extracted from OpenStreetMap Deutschland (2020). 

4.2.3.2 Experimental design 

To investigate influences of STP on the embryonic development and survival of freshwater crayfish, 

we exposed four groups (A-D) of ten egg-carrying noble crayfish to different locations with different 

chemical loads in the study site area. Group A was exposed to the area at a radius of 3 m meters around 

the inlet of the treatment plant. Group B was placed at a distance of 10 m and group C at a distance of 

15 m. Group D served as control group and was exposed in an area of 10 m upstream of the inlet to 

exclude influences of the chemical residues (Figure 4.8). 

 

Figure 4.8: Sketch (left) and overview (right) of the study site (OpenStreetMap Deutschland, 2020). 
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The animals were held in enclosures, whose suitability was evaluated in a former study (Laurenz et al., 

chapter 5.1, Figure 4.9), with two animals separated in one enclosure so that five enclosures each were 

exposed to the different concentrations. 

 

Figure 4.9: Construction of enclosures L/W/H = 60/25/25 cm; wooden top and bottom (Douglas fir, 2 cm thickness), hinged 

top cover, sides covered with wire fence (8 mm mesh size), two clay pipes placed inside, construction balanced with weights 

to float just underneath water surface. 

The investigation started in late March 2020 at development stages of embryos of approximately 40 %. 

All adult females were measured and the numbers of eggs were counted twice on the animals to 

ensure corrects numbers. The counting of eggs was proceeded and documented for every pleopod, 

but had to be finished in less than 10 minutes to reduce stress for the animals and the impact of stress 

on embryos. Due to individual enclosing, the animals were recognizable over the whole study. 

Therefore, survival rate of embryos could be attributed to every single female. 

The study area and the enclosures were inspected every day. Furthermore, once per week one egg per 

female was taken to document the development stages of embryos under a binocular microscope at 

40 x magnification after the work of (Alwes and Scholtz, 2006). At the dates of hatching, successfully 

hatched juveniles were removed from adult females, counted and measured. Measurement was 

performed by photographing juvenile crayfish with a scale under a binocular (Leica DM1000 LED, Leica 

S8APO, Leica Application Suite Version 3.0.0, Leica Microsystems CMS GmbH, D-35578 Wetzlar, 

Germany) and calculating the length with GIMP (Version 2.10.20, Fa. The Gimp Team). 

Six random juveniles per group were subsequently prepared for histological observations of the 

hepatopancreas. The whole animals were fixated in buffered formaldehyde (3.7 %). We stored the 
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juveniles in Kristensen solution for two days to ensure the complete decalcification of the exoskeleton. 

The samples were dehydrated with an ethanol series and then embedded in LR White (LR White acrylic 

resin, hard, sigma Aldrich, Germany). We produced sections of 2 µm thickness, using an 

ultramicrotome. These were stained with haematoxylin and eosin (HE) with extended exposure time, 

referring to usage instructions of the LR White. Animal sections and especially hepatopancreas cells 

were examined under a light microscope combined with the same camera system as described before. 

The examination included the observation of membrane damages, damages in different cell types as 

well as changes in size and numbers of B-Cells. For this procedure, ten sections per individual were 

photographed and subsequently analysed by counting and measuring cells under the microscope. 

A crayfish hepatopancreas is typically formed of numerous tubules separated by connective tissues 

(Abd El-Atti et al., 2019) and consists of lumen, membranes and four types of epithelial cells: resorptive 

lipid cells (R-cell) for nutrient intake, blister-like secretory cells (B-cell) to derive harmful substances, 

fibrillar cells (F-cell) as connecting tissue and embryonic cells (E-cell). That means, changes in R-cells 

would indicate a higher or lower intake of nutrients, changes in B-cells would indicate a higher or lower 

outtake of harmful substances, whereas changes in the other two types would indicate problems in 

biosynthesis of the individual. 

4.2.3.3 Animals 

The egg-carrying female noble crayfish (Astacus astacus) were obtained from a hatchery in Schleswig-

Holstein (Krebszucht Oeversee, Germany). They were hatched and raised in a semi-intensive 

aquaculture system so that external influences were minimized. The animals were three years old and 

showed carapace lengths of 40.29 cm to 61.58 cm with an average of 52.14 ± 4.27. They carried 

between 67 and 436 eggs, with an average of 166.6 ± 70.85. The animals were gathered the day before 

the experiment started and were kept in 600 L tanks in the recirculating aquaculture system (RAS) of 

the limnological department of Kiel University. 

4.2.3.4 Water parameters 

To be able to draw conclusions of observed effects on human influences, a comprehensive data 

acquisition of nutrient content, biotic and abiotic parameters and substantial load is necessary. 

Therefore, we equipped enclosures of every group with loggers collecting data every 10 minutes for 

oxygen, temperature, light intensity and pH, whereas conductivity was measured every 15 minutes 

(HOBO, Oxigen:ONS-U26-001, temp. and lux: ONS-UA-022-64, pH: ONS-MX2501, conductivity: ONS-

U24-002-C, Onset Computer Corporation, Bourne, MA, USA). Three plant protection products and 

thirty-three pharmaceutical products were monitored at three time points during the experiment (first 

day, after 30 days and on the last day) by an external lab (AGROLAB, Agrar und Umwelt GmbH, Kiel, 
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Germany). Nitrate, nitrite, ammonium and acid binding capacity was also measured at the three time 

points with a photometer (DR 5000, Hach Lange GmbH, Düsseldorf, Germany). 

4.2.3.5 Statistical methods 

All statistical analyses were performed using R version 3.2. (R Core Team, 2015). Differences in survival 

and juvenile size between different groups were tested for normality and equal variances prior to 

analysis. If both were evident, a t-Test was performed. For non-parametric data, a Wilcoxon test was 

used. The embryonic development was analysed via linear regressions. Due to good correlation values 

(> 0.8), the linear regressions were compared with an ANCOVA (analysis of covariances). Pictures were 

analysed in GIMP 2.8 (version 2.8, Fa. the Gimp Team). Influences of maternal size on survival, size of 

juveniles and number of laid eggs was also tested with correlation values of regressions. 

4.2.4 Results 

4.2.4.1 Water parameters 

Environmental parameters of the four locations were very similar as described in Table 4.3. The only 

difference can be observed in the temperature of the locations. The average temperature of location 

A is 1 °C higher than of the other groups (Figure 4.10). This higher temperature is caused by the warm 

water of the brook emerging from the STP. The shallow depth of only up to 20 cm causes a rapid 

heating of the water. Due to the differences in mean temperature, parameters were not analyzed over 

time but over degree days. Thereby, influences caused by different temperatures could be excluded. 

Table 4.3: Environmental parameters measured using photometer, titration or HOBO Logger. 

Parameter/group A ± SD B ± SD C ± SD D ± SD 

Nitrite [mg/L] 0.17 ± 0.02 0.11 ± 0.03 0.13 ± 0.03 0.13 ± 0.01 

Nitrate [mg/L] 4.43 ± 0.36 2.80 ± 0.21 3.25 ± 0.42 2.88 ± 0.18 

Ammonium [mg/L] 0.55 ± 0.08 0.24 ± 0.29 0.24 ± 0.06 0.18 ± 0.02 

Acid binding capacity 5.35 ± 0.07 5.17 ± 0.02 5.18 ± 0.06 5.15 ± 0.04 

Conductivity 597.00 ± 203.52 401.00 ± 63.00 422.00 ± 62.20 441.00 ± 64.20 

pH 7.79 ± 0.17 7.86 ± 0.26 7.55 ± 0.29 7.82 ± 0.34 

Oxygen 7.53 ± 3.38 7.25 ± 2.78 8.38 ± 1.79 8.45 ± 1.48 

Temperature 13.03 ± 2.67 12.10 ± 2.46 12.04 ± 2.46 12.00 ± 2.46 
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Figure 4.10: Temperatures measured with HOBO loggers inside of enclosures group B, C and D are identical and, thus, only 
one line is visible. 

4.2.4.2 Chemical load 

The analysis of chemical loads in the study area showed that 25 of the 36 tested chemicals were 

detectable (Table 4.4). Most of these were traceable only in the direct area of the STP input. Highest 

concentrations were found for the pharmaceuticals Carbamazepin (antiepileptics), Diclofenac 

(analgetica), Metformin (biguanide), 4-Acetamidoantipyrin (metabolite of metamizole, analgetica), 4-

Aminoantipyrin (derivate of Pyralozone, analgetica) and 4-Formylaminoantipyrin (metabolite of 

Aminophenazone, analgetica). For plant protection products, AMPA (metabolite of Glyphosate) and 

Glyphosate were detected in highest concentrations at the end of the experiment with 1.5 µg/L AMPA 

and 5.8 µg/L Glyphosate. 

 

 

 

 

 

 

 

https://pubchem.ncbi.nlm.nih.gov/compound/metamizole
https://pubchem.ncbi.nlm.nih.gov/compound/aminophenazone
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Table 4.4:Averages of monitored pharmaceuticals and plant protection products. Results of single measurements are given in 

supplemental material 

Detected chemical [µg/l] /group A  B  C  D  

Acetylsulfamethoxazol  0.021 ± 0.021 - - - 

Bezafibrat  0.117 ± 0.056 - - - 

Carbamazepin  2.767 ± 0.249 <0.03 (+) ± 0 <0.03 (+) ± 0 <0.03 (+) ± 0 

Diclofenac  2.767 ± 0.125 0.02 ± 0.02 0.02 ± 0.02 0.013 ± 0.019 

Fenofibrat  <0.03 (+) ± 0 - - - 

Fenofibrinsäure <0.03 (+) ± 0 - - - 

Ibuprofen <0.30 (+) ± 0 - - - 

Indometacin  <0.03 (+) ± 0 - - - 

Ketoprofen  <0.05 (+) ± 0 - - - 

Lidocain  0.17 ± 0.005 - - - 

Metformin  1.443 ± 0.575 <0.05 (+) ± 0 0.045 ± 0.045 0.045 ± 0.045 

Naproxen  0.18 ± 0.071 - - - 

Paracetamol  0.034 ± 0.025 - - - 

Phenazon  0.167 ± 0.119 - - - 

Primidon  0.560 ± 0.399 - - - 

Tris-2-Chlorethylphosphat  <0.50 ± 0.170 <0.10 ± 0 <0.10 ± 0 <0.10 ± 0 

10-Hydroxy-10,11-

dihydrocarbamazepin  0.80 ± 0.572 0.03 ± 0 0.015 ± 0.015 0.01 ± 0.014 

4-Acetamidoantipyrin  1.50 ± 0.356 0.06 ± 0.02 0.075 ± 0.01 0.07 ± 0.016 

4-Aminoantipyrin  1.397 ± 0.458 <0.03 (+) ± 0 0.04 ± 0 0.02 ± 0.02 

4-Dimethylaminoantipyrin  <0.03 (+) ± 0 - - - 

4-Formylaminoantipyrin  10.667 ± 0.943 0.23 ± 0.11 0.19 ± 0.155 0.163 ± 0.133 

AMPA  0.91 ± 0.429 0.06 ± 0.02 0.055 ± 0.02 0.043 ± 0.019 

Glyphosate  2.007 ± 2.682 <0.03 (+) ± 0 <0.03 (+) ± 0 <0.03 (+) ± 0 

Terbuthylazine  <0.03 (+) ± 0 <0.03 (+) ± 0 <0.03 (+) ± 0 <0.03 (+) ± 0 
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4.2.4.3 Survival 

With 80.81 % ± 10.15 embryonic mortality until hatching, animals exposed to the direct area of the 

STP (group A) showed a significantly higher mortality compared to groups B and D (p ≤ 0.049, Figure 

4.11). The other locations did not differ significantly in their mortality. Mortality of the control group 

(D) was 61.79 % ± 24.09 on average. The regression of maternal size with embryonic mortality showed 

an R2-value of -0.0068, which shows that mortality is independent of maternal body size. However, the 

number of initially laid eggs correlated with maternal size with a value of R2 0.499, as expected.  

 

Figure 4.11: Mortality in % and standard deviation of the four exposure groups. Letters show significant differences after t-Test 

4.2.4.4 Embryonic development 

Embryonic development did not differ between the four locations, taking the different temperatures 

into account (Figure 4.12). However, the embryos developed similarly in regard to degree days, but 

not to actual dates. For this specific area, this results in a hatching of juveniles of the first group six 

days earlier than of the other groups.  
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4.2.4.5 Size of juveniles 

Carapace sizes of freshly hatched juveniles showed a clear correlation to the location and therefore 

present chemicals (Figure 4.13). Juveniles developing in group A showed an average length of 4.23 mm 

± 0.21 and were, thus, significantly smaller than the animals developing in all other locations 

(p ≤ 0,0004). At the same time, the juveniles that hatched in control group D had an average length of 

4.56 mm ± 0.19 and were significantly larger than all other groups (p ≤ 9.4e-05). Only the two groups 

exposed to low concentrations of the wastewater were similar to each other (B = 4.38 ± 0.23, 

C = 4.40 ± 0.19). 
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Figure 4.12: Embryonic development of the four groups with linear regression 

Figure 4.13: Average size for the different exposure locations of the groups. Letters indicate significant differences 
(t-Test). 
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4.2.4.6 Histology 

Figure 4.14 shows the impact of the different placements of enclosures in the study site on the 

hepatopancreas cells. For groups B and C, there are no differences in B-cell sizes or numbers per cell 

compared to the control. For hepatopancreas cells of group A (the group exposed directly to the 

influences of the STP with highest measured concentrations of chemicals), however, we found 

damages in every section and for nearly all observed cells. Membranes were disrupted resulting in the 

formation of abnormal lumen, and necrotic cells were found in every section. Number of B-cells, which 

normally are connected to the lumen were significantly lower (p < 0.0001) for this group compared to 

all others. B-cell numbers per group were: A: 21.32 (SD = 3.14); B: 44.25 (SD = 6.20); C: 45.18 

(SD = 5.54); D: 44.58 (SD = 5.67). 

Because of the many damages and indistinct borders of the B-Cells, the sizes of B-cells were not 

compared. 
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Figure 4.14: Transversal histological sections of noble crayfish (Astacus astacus) exposed to the different environmental 
influences during embryonic development. Marked areas are lumen (L), membrane (M) and four types of epithelial 

cells: resorptive (R) lipid cells, blister-like (B) cells, NCH: Necrotic cells of hepatopancreas. C = Control; Ⅰ = Group A; 

Ⅱ = Group B;Ⅲ = Group C 
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4.2.5 Discussion 

4.2.5.1 Chemical loads 

Even though STPs are one of the major sources of chemicals influx into aquatic environments (Gagné 

et al., 2006), little is known about effects of the diverse and constantly changing chemical load on 

aquatic organisms. In our example, 25 out of 36 tested substances were detected in the water of the 

Eider. Many of these substances, originating from human and veterinarian pharmacy and agriculture, 

are known to have toxic effects on non-target organisms. On the one hand, Paracetamol and 

Metformin show toxicological effects on the standard organism Daphnia magna starting from 6.5 mg/L 

and 64 mg/L, respectively, and, therefore, at higher concentrations than detected in the Eider 

(Cleuvers, 2003; Jungkon Kim et al., 2010). On the other hand, Carbamazepine shows effects on 

Daphnia magna starting at concentrations of 0.5 µg/L (Dietrich et al., 2010) and on the green crab 

(Carcinus maenas) at concentrations of 1 µg/L (Aguirre-Martínez et al., 2013) ), which represent lower 

concentrations than measured in this study. Diclofenac, one of the chemicals with the highest 

monitored concentrations, is described by Fent et al. (2006) as the compound having the highest acute 

toxicity within the class of NSAIDs. Especially the effects of DCF mixtures with other chemicals 

introduced to surface waters can increase the negative effects of this analgetic (Gonzalez-Rey et al., 

2014; Prokkola et al., 2015). Sublethal effects of DCF on freshwater crayfish were observed from 

concentrations of 0.16 mg/l and higher with condemned embryonic development in marbled and 

noble crayfish (Laurenz et al., chapter 3.2). Glyphosate is one of the better studied chemicals regarding 

toxic effects. Canosa et al. (2019) showed that Glyphosate can imbalance the male reproductive 

function of the estuarine crab Neohelice granulata at concentrations of 1 mg/L. Banaee et al. (2020) 

demonstrated additionally that effects of Glyphosate are increasing when mixed with other pesticides 

like Chlorpyrifos. Therefore, lowest effective observed concentrations could be even lower than the 

40 mg/L observed by Avigliano et al. (2014). The higher toxicity of mixtures is verified by countless 

observations (Müller et al. 2020; Oliver et al. 2020). 

These effects of mixtures make it even more important to understand the impact of contamination 

caused by human input into surface waters on non-target organisms. 

4.2.5.2 Effects on freshwater crayfish 

4.2.5.2.1 Survival 

At 61.8 %, the mortality of the control group (D) is comparable to known hatching rates of noble 

crayfish (54.6 %) as shown by Kouba et al. (2010). However, the mortality of group A, which was 

exposed directly to the influences of the STP, is higher than uninfluenced survival rates found in 

literature (Policar et al., 2004; Policar et al., 2006; Reynolds et al., 1992). 
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The monitored concentrations of chemicals are very limited to a small location at the entry of the STP. 

This enabled the implementation of this study in a comparatively small area and, therefore, the effects 

on the crayfish population are limited to that small range. Nevertheless, concentrations of 

pharmaceuticals and agricultural substances are not always limited to small areas and can also affect 

whole streams and large lake habitats (Kandie et al., 2020; Maasz et al., 2019; Picó et al., 2020; Wang 

et al., 2020). While the monitored compounds and concentrations differ for every location, influences 

of the compositions of residues of the human products for health and agriculture are very likely. 

Survival rate of the juveniles is one, if not the most important factor for stabilisation of populations. 

This means that a decrease of juvenile survival of 30.85 %, as shown in this study, can lead to a 

reduction of population size of the endangered species (Edsman et al., 2015). 

4.2.5.2.2 Development 

The development and time until hatching did not differ between groups regarding degree days. The 

hatching took place in June for all groups, which fits the observations of Ackerfors (1999). However, 

when comparing development of groups regarding days, the group directly exposed to the influences 

of the STP shows a shorter development time, so that the juveniles hatched six days earlier. This is due 

to the higher water temperature of the stream delivering the STP water into the river. A shorter 

development time can have positive and negative effects at the same time. The earlier hatch can lead 

to an advantage of the animals in lower food competition and, thus, faster growth (Franke and 

Clemmesen, 2011). Temperatures, that are too high can lead to a faster development and 

consequently to higher rates of abnormal development and higher mortality of juveniles (Jin et al., 

2019). In this study, no significant differences in development or malformations were detectable, and 

the temperature of all groups was below 20 °C and, thus, in the optimal range for noble crayfish 

reproduction (Policar et al., 2004; Westin and Gydemo, 1986). Therefore, we conclude that the higher 

temperature leads to an early hatching of juvenile crayfish, but the chemical load does not affect the 

hatching time or development. 

4.2.5.2.3 Juvenile size 

Effects of the locations on the offspring are visible in the size of juveniles. The overall sizes are higher 

than described in literature, where the very few data showed illustrations with stage 1 juveniles of 

about 1 to 1.5 mm carapace size (Kawai and Kouba, 2020). The differences in sizes are correlated to a 

higher load in chemicals of the locations. Smaller body sizes caused by toxic influences are described 

in the literature. Mac Loughlin et al. (2016), for instance, showed that Atrazine can influence weight 

gain of Cherax quadricarinatus at concentrations of 2.5 mg/L and Avigliano et al. (2014) as well as 

Frontera et al. (2011) showed a decrease of weight gain due to Glyphosate for the same species 

starting from 40 mg/L and 22.5 mg/L, respectively. Velisek et al. (2015) showed that terbuthylazine-2-
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hydroxy can lead to a decrease in weight gain for Procambarus virginals when exposed during first life 

stages including embryonic development at a concentration of 75 µg/L of. These early life stages are 

known to be more sensitive to chemical impacts than advanced juveniles (Barki and Karplus, 2004; 

Jones, 1990). This fact in addition to the higher toxicity of mixtures of chemicals can explain the high 

sensitivity of the noble crayfish embryos in terms of growth observed in this study. The smaller size 

can lead to a disadvantage in competition for food and habitat and, therefore, on survival of the 

endangered species. Additionally, the smaller body size causes a higher feeding pressure on the 

juvenile crayfish, especially through other invertebrates (Zimmermann J.K.M., 2009).  

4.2.5.2.4 Histology  

Histology of the hepatopancreas is serving as a parameter to measure sublethal toxicological effects 

in several publications. The organ is known to be analogous to the mammalian liver, which is also 

susceptible to chemicals such as pesticides. Saravana Bhavan (2000) showed effects of the pesticide 

Endosulfan on the prawn Macrobrachium malcolmsonii. Damages reported in this study were 

increasing number of R-cells, formation of abnormal lumen, necrotic cells of the hepatopancreas 

separated from basal laminae and thickened basal laminae. Especially the necrotic cells and abnormal 

lumen were very similar to the damages found in this study. However, we did not detect differences 

in number of R-cells or thickness of basal lamina. Chaufan et al. (2006) found epithelial disorganisation 

in hepatopancreas tubules of Chasmagnathus granulatus. In addition, diameters and numbers of B-

cells increased after feeding the crayfish Hexachlorobenzene-contaminated Chlorella for three days, 

similar to the effects of the STP output. 

Koutnik et al. showed in 2017 pathological changes in hepatopancreas of early life stages of marbled 

crayfish through chronic terbuthylazine-2-hydroxy exposure in concentrations of up 75 μg/L. In 

particular crayfish exposed to higher concentrations showed an alteration of the tubular system 

including disintegration of tubular epithelium with complete loss of structure in some places of the 

hepatopancreas. These losses of structure can also be found in this study for embryos exposed to the 

direct influence of the STPs.  

Additional effects of the exposure of crustaceans to pesticides can be interstitial sinus haemocytic 

infiltration, melanisation and coagulation in the thickened basal laminae, necrotic tubules containing 

tissue debris, and haemocytes that can constitute a wall around the thickened basal laminae of the 

tubules (Negro et al., 2011). However, these were not observed in the present study. 

The similarities of the effects in this study to effects of studies examining single chemical influences (in 

much higher concentrations than any chemical measured in this study) show that the mixture of 

substances most probably represents a risk that is multiple times higher for freshwater crayfish. 
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Therefore, the limit values of chemicals in surface waters should be defined with regard to an inclusion 

of possible mixture effects.  

4.2.6 Conclusion 

The initially asked questions can be answered as follows: 

 

I: Yes, chemicals that origin from STPs affect the survival of noble crayfish embryos. 

ii: Yes, the embryonic development of noble crayfish is influenced by these chemicals, and  

iii.: concentrations of first occurring effects are as measured in group C of this study. 

 

The results of this study reveal the effects of chemicals originating from an STP on freshwater crayfish. 

The effects decrease with increasing distance to the chemical input on a relatively small area. 

Therefore, there will probably be no significant influences on the local crayfish population. But the 

data are more important to estimate the danger of various intensities of chemical load on freshwater 

crayfish. Therefore, the chosen study site was an excellent opportunity to investigate influences of 

different naturally occurring pollutions on these organisms. As a consequence, the results should be 

considered for the estimation of limit values. Furthermore, if monitoring data of surface waters show 

similar concentrations, this study can help to understand and predict the impacts on freshwater 

crayfish populations and, thus, on the whole ecosystem. 
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5 Overall discussion and perspective 

5.1 Discussion and connection of chapters 2, 3 and 4 

The present studies show that the influences of chemicals originating from human sources can affect 

the reproduction and the fitness of freshwater crayfish. 

At first, we want to try to answer the first question asked in the introduction:  

1: Are reproduction stages of freshwater crayfish influenced by the chemicals TBA and DCF or by the 

mixture of chemicals in sewage treatment plants?  

As the above manuscripts demonstrate, influences are present in all periods of the freshwater crayfish’ 

reproduction. The gonadal development of noble crayfish was affected resulting in a smaller number 

of next generation crayfish (see chapter 2). For noble crayfish, concentrations of 0.16 mg/L DCF and 

1.6 mg/L TBA resulted in smaller egg numbers and all investigated concentrations, resulted in smaller 

numbers of spermatozoa. For marbled crayfish on the other hand, these effects were not detectable 

at all. 

The study on embryonic development presented in chapter 3 shows that embryos of noble crayfish 

have a lower survival rate starting from concentrations of 0.1 mg/L TBA and 10.24 mg/L DCF. In 

addition, sublethal effects are observed starting from concentrations of 0.025 mg/L TBA and 0.04 mg/L 

DCF. Equivalent results for experiments involving DCF were detected for marbled crayfish, but a higher 

sensitivity for noble crayfish compared to marbled crayfish was found when exposed to TBA. 

Linking the results about the gonadal development (chapter 2) with the results of the embryonic 

development (chapter 3) under the influence of the two chemicals reveals that survival of crayfish 

during both periods of reproduction is affected at concentrations multiple times higher than to be 

expected in surface waters (0.035 mg/L for TBA and 0.029 mg/L for DCF, (Herrero-Hernández et al., 

2017; Dusi et al. 2019). Nevertheless, we have to take into account, whether the influences on both 

reproduction periods may accumulate and could result in negative effects on the reproduction of 

crayfish even at lower concentrations. There are trends in our data indicating that the lowest 

concentrations of the used chemicals result in lower numbers of eggs after exposure of parental 

animals during gonadal development for noble crayfish. These effects are also visible but not 

statistically significant for embryonic development. If these two trends are summed up, survival might 

be significantly lower for animals exposed to TBA and DCF over time, i. e. over several reproduction 

cycles. 
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In order that the effects can accumulate, animals would have to be exposed during both periods of the 

reproduction cycle. However, for TBA, exposure times of several months would be unrealistic. TBA is 

a pre-emergence herbicide in corn farming. This leads to peaks of TBA concentrations in natural water 

bodies during March and April (Tasca et al., 2018). Therefore, an exposure to this chemical over at least 

four months of gonadal development plus at least 45 days of embryonic development is unlikely. 

Consequently, accumulating effects of the two periods in one reproduction cycle are implausible. 

However, it is possible that one generation of one population is affected during both periods of 

reproduction in different reproduction cycles. For example, if a generation is weakened during their 

embryonic development resulting in a smaller number of individuals and is additionally exposed to TBA 

while developing oocytes and spermatozoa, this generation could produce an even smaller number of 

offspring. Overall, this would lead to a decreasing trend of population offspring numbers. 

In contrast to TBA, a permanent exposure over the whole year is the general case for DCF due to its 

year-round use. It is the most frequently detected drug in German surface waters. It has been 

perennially detected in surface waters in concentrations of up to 29.8 µg/L in 55 countries (Dusi et al., 

2019). Therefore, aquatic animals can be exposed to DCF and other drugs throughout their whole life. 

Number and survival of eggs were affected by concentrations of 160 µg/L after four months exposure 

during gonadal development, which is less than six times the measured concentration of DCF in surface 

waters. As a result, direct effects on the number of freshwater crayfish are more likely to be found for 

DCF than for TBA, but for both chemicals these direct effects are unlikely in terms of a single chemical 

influence on the animals. More important are the accumulating effects over several years and the 

sublethal effects found in the studies of chapters 2 and 3. 

Considering that the two sublethal effects spermatozoa production and the histology of the 

hepatopancreas are affected by concentrations of the two chemicals found in surface waters of 

Europe, it has to be assumed that these are a threat to the endangered noble crayfish. Sperm quality 

is one of the main factors affecting reproductive efficiency in male crustaceans (Wickins and O'C Lee, 

2003). This parameter is affected by the presence of environmental pollutants (Lewis and Ford, 2012). 

Canosa et al. (2019) showed that the herbicide Glyphosate can imbalance the male reproductive 

function of the estuarine crab Neohelice granulata at concentrations of 1 mg/L by producing abnormal 

spermatophores and a reduction in sperm count. The authors conclude the possibility of a reduction 

in brood production and larvae recruitment in the natural environment. The results of spermatophore 

analyses of freshwater crayfish under influences of TBA and DCF from this study lead to the same 

conclusion and reveal a severe threat to crayfish populations. 

However, not only for wild populations of freshwater crayfish sperm quality is important. Harlıoğlu et 

al. (2018) showed that control of male reproduction and spermatophore quality is an important matter 
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in crustacean aquaculture. Crustaceans represent 10 % of the global aquaculture production (FAO, 

2018). In recent decades crustacean aquaculture was developing rapidly worldwide and is considered 

to be an important food production sector in terms of sources of animal protein, occupation and 

financial gain as well as foreign exchange earnings (Kozák, 2015; Wickins and O'C Lee, 2003). Different 

crayfish species have been assessed for artificial breeding and cultivation programs as these animals 

are a wholesome and desirable food (Yazicioglu et al., 2018). Hence, the impact of chemicals is not 

only relevant for reasons of nature conservation, but also for economy and food production.  

Additionally, not only the number of sperm-cells and eggs of noble crayfish are affected by both 

chemicals, but also, as a sublethal parameter, changes of hepatopancreas histology were shown for 

every concentration for parental and juvenile noble crayfish. The hepatopancreas is the site of nutrient 

absorption, digestion, synthesis and secretion of digestive enzymes and reserve storage in decapods 

(Calvo et al., 2011; Johnston et al., 1998; Xiao et al., 2014). It is formed of numerous tubules separated 

by connective tissues (Abd El-Atti et al., 2019) and consists of a lumen, membranes and four types of 

epithelial cells. When investigating effects of potentially harmful substances, the blister-like secretory 

cells (B-cell), which channel off harmful substances, are of great interest. Changes in B-cell size or 

number would indicate a higher or lower outtake of harmful substances. Therefore, chemical load and 

stress originating from this load can be detected by histological changes of these cells. At the same 

time, these changes can lead to a damaged or non-functional organ, resulting in a flawed or decreased 

functionality including the defence against harmful substances. As another parameter, influences of 

the chemicals on the weight of hatched crayfish were shown in chapter 3 for noble crayfish exposed 

to high TBA concentrations starting at 1.6 mg/L. Hence, we assume that the substances, without 

interfering substances or circumstances, would not have an impact on hatching weight under outdoor 

conditions due to the much lower detected concentrations in surface waters.  

In conclusion, the chemicals TBA and DCF influence sperm quantity, egg numbers, survival of embryos 

and the histology of the hepatopancreas, which results in combined impacts on the stability and fitness 

of freshwater crayfish populations under outdoor conditions and in aquaculture. Therefore, the first 

part of the first question asked in the aims of this study is answered: 

1: Reproduction stages of freshwater crayfish are negatively influenced by the chemicals TBA and DCF. 

To answer the second part of the question, whether or not reproduction stages of freshwater crayfish 

are influenced by the mixture of chemicals in sewage treatment plants, we have to take a look at 

chapter 4, where the effect of an STP outlet on noble crayfish was investigated in a field study. 

The four locations used in the field study represent naturally occurring habitats with different chemical 

loads. They comprise a river section of approximately 20 m around the entry of the STP wastewater. 
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This enables the study site to serve as a model for differently polluted surface waters and at the same 

time provide similar environmental parameters to ensure the comparability of the data. Nevertheless, 

concentrations of pharmaceuticals and agricultural substances are not always limited to small areas 

and can also affect whole streams and large lake habitats (Kandie et al., 2020; Maasz et al., 2019; Picó 

et al., 2020; Wang et al., 2020). While the monitored compounds and concentrations differ at each of 

the four locations, influences of the compositions of residues of the human products for health and 

agriculture are very likely. This study shows that pollution as strong as in this small area can definitely 

harm crayfish reproduction and, as a consequence, crayfish population dynamics. In this case, the 

influences on the whole ecosystem and on present populations of crayfish in this stream are marginal 

due to the dilution of concentrations after a relatively short distance, as shown in the manuscript data. 

To transfer the findings of chapter 4 to other surface water areas, we take a closer look at the 

connections of measured concentrations and affected variables. 

The studied parameters (survival of embryos, size of hatched animals and histology of the 

hepatopancreas of hatched juveniles) are all affected, at least by the chemical load in the direct 

influence area of the STP. The concentrations of all detected chemicals are lower than highest 

measured concentrations in surface waters. For example, DCF concentrations of 2,767 ± 0,125 µg/L 

were measured in the wastewater at location A, but were still much lower than the highest reported 

concentrations in surface waters of 29 µg/L (Dusi et al., 2019). However, we measured concentrations 

of Carbamazepin, DCF and Primidone as high or higher than the predicted non-effective concentrations 

(Vogel, 2011). In addition, the mixture and relatively high concentrations of the above-mentioned 

three pharmaceuticals or even some not-monitored substances have a relatively high impact on the 

study animals. The observed decrease of hatched embryos shows that the sensitive reproduction cycle 

is disturbed by the chemicals. Survival rate of juveniles is one, if not the most important factor for the 

stabilisation of populations. Therefore, a decrease of juvenile survival of more than 30.85 %, as 

observed in this study, can lead to a reduction of population size of the endangered species Astacus 

astacus (Edsman et al., 2015). 

Not only survival, but also sublethal effects are of importance in this study under outdoor conditions, 

similar to the laboratory experiments. Effects of decreased size and hepatopancreas damages were 

discussed before, but in chapter 4 it becomes even more obvious how important the actual control of 

chemical input in aquatic systems can be. Even the lowest chemical doses influenced organisms that 

were not in the direct area of the STP output and showed these sublethal effects. 

Thus, the second part of the first question is answered as well. It is proven, that DCF, TBA and also the 

mixture of chemicals in sewage treatment plants negatively influence the reproduction of freshwater 

crayfish.  
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Consequently, the second question phrased in the aims of this study has to be answered:  

2: Are marbled crayfish suitable as a model organism in toxicological studies? 

This question cannot be answered with a clear “yes” or “no”. Harzsch and Viertel (2020) as well as 

Linzmaier and Jeschke (2019) recently showed that marbled crayfish can serve as model organisms for 

immunolocalization of neurotransmitters and neuromodulators or to measure the impact of 

introducing truly new species into an ecosystem. Hossain et al. (2018) also showed in his review that 

the species is already used in toxicological studies, but that its suitability and sensitivity was not 

investigated before.  

The studies of chapter 2 and 3 indicate that the suitability of marbled crayfish as a model organism in 

toxicological studies depends on the studied parameters and the used chemicals. When investigating 

the impact of DCF on embryonic development, marbled crayfish showed similar responses compared 

to noble crayfish. In contrast, noble crayfish were much more sensitive when exposed to TBA 

compared to marbled crayfish. For gonadal development, effects were only detectable for noble 

crayfish, but not for marbled crayfish. 

In chapter 2, we were able to show that the effects of the exposure to the chemicals are identical in 

both species, even if they were connected to different concentrations of the chemicals. 

Therefore, we conclude that the usage of marbled crayfish as model organism can only be 

recommended to transfer detected damages to other species. Not observed effects are not necessarily 

also missing for other species and effective concentrations might be different for other crayfish 

species. 

For the estimation of NOEC (No Observed Effect Concentration) or PNEC (Predicted No Effect 

Concentration) or even LC50-values, more sensitive organisms than marbled crayfish should be used to 

assure that limit values are not harmful to other species. 

5.2 Perspective  

While toxicological approaches have certainly helped advance our understanding of the impact of 

anthropogenic pollution on freshwater crayfish, much remains to be discovered. In a way, the findings 

of this thesis created the foundation to address new and exciting questions in toxicological and 

ecological approaches with the aim to protect the crayfish and their ecosystem. 

Especially the results described in chapter 4 of this study showed the importance of future studies 

examining ecotoxicological effects on freshwater systems. The amount of chemicals found in the study 

site and the poor amount of available data on their toxicological risk on freshwater crayfish underline 

the importance of further studies in order to understand and evaluate the effects of the chemical load 
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on freshwater crayfish. In this context, the estimation of mixture effects of substances on aquatic 

organisms will be of special interest. Many studies and reviews are already addressing the problem 

and point out the need of future studies in this field. For instance, Overturf et al. (2015) show the 

increasing relevance of studies concerning the mixture of chemicals originating from sewage treatment 

plants, similar to this study. Vasquez et al. (2014) demonstrated the importance of chronic exposure 

of pharmaceuticals in surface waters and the assessment of cocktail effects. Many more studies show 

how difficult but important the understanding of chemical mixtures and the effects are for ecological 

health (Ahrens et al., 2016; Altenburger et al., 2018; Orton et al., 2014). 

Nilsen et al. (2019) analyse data of contaminants of emerging concern (CECs) from several toxicological 

studies. The authors formulate the following challenges for future approaches for a better 

understanding of toxicological effects:  

1) more detailed information on the complexity of mixtures of CECs in the aquatic environment, 

2) a greater understanding of the sublethal effects of CECs on a wide range of aquatic organisms,  

3) an ascertaining of the biological consequences of variable duration CEC exposures within and across 

generations in aquatic species,  

4) a linkage of multiple stressors with CEC exposure in aquatic systems and  

5) a documenting of the trophic consequences of CEC exposure across aquatic food webs. 

As shown in chapter 4, only the first two challenges may lead to a nearly unlimited number of studies 

due to the big number of chemicals and organisms that need to be included to gather all the 

information needed. This challenge was also addressed in all chapters of this thesis. Nevertheless, the 

possibilities of sublethal effects are vast and many have probably not even been discovered yet. To 

expand our knowledge, further parameters, for example regarding effects on stress proteins (Dix, 

1997), receptor pathways (Baldwin et al., 2003) and behaviour (Little and Finger, 1990), should be 

included. 

In addition, challenges 3-5 posed by Nilsen et al. (2019) can and should also be processed for as many 

organisms and chemicals as possible. Only by assessing every possible combination of pollutant and 

effect we can fully understand the consequences resulting from pollutants in aquatic environments. In 

this present study, we were able to show effects of two single chemicals and the specific mixture of 

the STP on freshwater crayfish. We can assume that the possibly resulting decreasing population sizes 

of the “ecosystem engineers” and “key species” noble crayfish (Weinländer and Füreder, 2016) have a 

major impact on their habitat. However, to fully confirm and understand the meaning of pollutants for 

these animals many more studies have to be carried out in the future. 
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6.4 Supplemental Material Chapter 2 

Table 6.1: weights of noble crayfish in g 

Animal/Conc.  0 0.025 T 0.4 T 1.6 T 6.4 T 0.04 D 0.16 D 2.56 D 10.24 D 

W1 38.37 - 43.8 47.47 - 33.08 37.81 - - 

W2 31.37 40.19 38.94 34.83 - 26.13 33.32 35.78 39.1 

W3 40.96 28.07 49.61 45.8 38.45 29.75 37.1 - 42.87 

W4 47.66 45.43 42.93 36.09 44.98 34.64 28.59 23.51 31.02 

M1 48.01 27.79 36.03 23.47 38.44 37.3 32.8 27.19 48.39 

M2 34.26 34.69 38.52 29.61 29.3 35.84 37.54 27.39 36.25 
 

Table 6.2: sizes of noble crayfish in cm 

Animal/Conc.  0 0.025 T 0.4 T 1.6 T 6.4 T 0.04 D 0.16 D 2.56 D 10.24 D 

W1 5.22 5.14 5.7 5.5 - 5.2 5.31 - 5.29 

W2 4.91 5.56 5.38 5.35 - 4.89 5.12 4.91 5.18 

W3 5.51 5.03 6.05 5.7 5.49 4.82 5.22 - 5.52 

W4 5.8 5.8 5.49 5.49 5.7 5.21 4.85 4.51 4.89 

M1 6.1 4.9 5.25 4.36 5.21 5.21 5.2 4.72 5.23 

M2 5.14 5.18 5.19 4.96 4.59 5.39 5.2 5.08 4.9 
 

 

 

Table 6.3: Laid eggs of female noble crayfish 

Animal/Conc.  0 0.025 T 0.4 T 1.6 T 6.4 T 0.04 D 0.16 D 2.56 D 10.24 D 

W1 287 278 136 110 97 4 89 0 0 

W2 187 230 198 94 89 159 68 0 0 

W3 245 189 187 134 124 210 124 45 0 

W4 245 179 198 102 0 232 145 65 0 
 

Table 6.4: Hatched juveniles of noble crayfish 

Animal/Conc.  0 0.025 T 0.4 T 1.6 T 6.4 T 0.04 D 0.16 D 2.56 D 10.24 D 

W1 145 152 65 50 23 0 30 0 0 

W2 110 123 100 0 x 86 0 0 0 

W3 165 145 89 0 x 93 56 x x 

W4 0 x x x x x x x x 
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Table 6.5: Quantification Spermatozoa TBA 

Konz 0.00 0.00 TBA 0.025 TBA 0.4 TBA 0.4 TBA 1.6 TBA 6.4 

Tier K1 K2 T1 T3 T4 T5 T7 

Spermatozoa 1 222 129 30 245 101 127 150 

  217 145 33 288 132 119 107 

  172 158 30 259 80 123 135 

  224 161 21 229 86 125 85 

Spermatozoa 2 254 130 43 219 85 136 133 

  242 143 45 260 84 102 111 

  248 158 34 181 98 129 96 

  240 158 30 277 76 150 122 

Spermatozoa 3 227 188 32 163 77 86 51 

  190 159 51 144 83 74 82 

  235 198 52 157 91 83 54 

  240 230 48 152 78 99 34 

Spermatozoa 4 241 221 46 208 58 173 11 

  272 171 41 231 62 99 20 

  217 173 35 247 70 122 23 

  271 167 41 181 68 128 23 

Spermatozoa 5 188 271 65 256 107 156 135 

  248 218 85 177 72 144 95 

  223 260 59 240 96 103 115 

  199 236 69 208 96 124 145 

Spermatozoa 6 197 178 57 202 77 130 158 

  200 257 86 194 129 102 133 

  186 258 66 244 77 98 141 

  206 166 56 241 96 114 167 

Spermatozoa 7 269 186 38 268 84 111 156 

  190 150 52 196 102 81 172 

  218 194 36 267 92 96 133 

  210 160 47 223 93 81 119 

Spermatozoa 8 229 150 33 254 72 64 159 

  251 154 54 236 95 69 135 

  225 155 41 218 81 55 91 

  203 109 48 276 91 88 122 
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Table 6.6: Quantification Spermatozoa DCF 

Konz D 0.04 D0.04  D 0.16 D 0.16 D 2.56 D 10.24 

Tier D9 D10 D11 D12 D13 D14 

Spermatozoa 1 39 37 19 96 76 11 

  50 30 27 95 60 19 

  45 45 15 104 61 18 

  53 43 14 133 51 13 

Spermatozoa 2 61 26 19 86 56 17 

  62 50 33 124 40 18 

  51 30 29 89 45 22 

  55 31 20 134 46 16 

Spermatozoa 3 93 16 22 48 26 7 

  80 41 23 95 39 14 

  119 29 29 89 40 10 

  98 35 20 71 29 21 

Spermatozoa 4 158 78 9 106 47 16 

  151 64 14 136 49 14 

  147 71 24 124 51 24 

  161 70 14 130 64 11 

Spermatozoa 5 87 45 10 61 31 10 

  101 53 23 92 27 12 

  123 34 16 70 36 12 

  126 19 16 64 33 13 

Spermatozoa 6 232 25 13 79 33 8 

  233 32 17 77 34 16 

  177 30 20 69 23 10 

  201 26 15 80 27 14 

Spermatozoa 7 42 38 27 92 12 11 

  36 47 16 73 13 19 

  61 44 13 104 15 5 

  59 36 19 78 19 13 

Spermatozoa 8 69 24 13 69 59 6 

  73 17 16 85 79 13 

  50 30 13 84 74 7 

  60 31 18 68 51 15 
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Table 6.7: Percentage of living Sperm Cells 

Sample/Conc. 0 0.025 T 0.4 T 1.6 T 6.4 T 0.04 D 0.16 D 2.56 D 10.24 D 

1 54.55 100.00 46.67 50.00 50.00 0.00 16.67 50.00 14.29 

2 41.67 33.33 56.52 50.00 46.67 0.00 200.00 71.43 0.00 

3 58.33 100.00 54.17 50.00 23.53 50.00 25.00 60.00 10.00 

4 60.00 60.00 47.62 20.00 28.57 50.00 27.27 62.50 25.00 

5 50.00 50.00 57.89 16.67 9.09 28.57 7.14 80.00 30.00 

6 40.00 71.43 44.44 0.00 50.00 58.62 7.69 71.43 28.57 

7 60.00 100.00 50.00 25.00 30.77 28.57 0.00 52.00 0.00 

8 70.00 100.00 46.67 25.00 11.11 44.44 33.33 33.33 0.00 

9 28.57  50.00   0.00 81.82   
10 40.00  75.00   62.50 66.67   
11 50.00  66.67   57.14 50.00   
12 100.00  44.44   100.00 33.33   
13 75.00  100.00   75.00 60.00   
14 50.00  66.67   75.00 33.33   
15 85.71  50.00   57.14 60.00   
16 66.67  66.67   80.00 60.00   

Average 58.16 76.85 57.71 29.58 31.22 47.94 47.64 60.09 13.48 
 

 

 

Table 6.8: B-Cell sizes 

  0 TBA 0.025 TBA 0.4 TBA 1.6 TBA 6.4 D 0.04 D 0.16 D 2.56 D 10.24 

Average 26.86 39.60 53.98 68.15 75.58 41.53 44.10 50.20 73.90 

SD 9.90 11.51 14.57 16.44 23.53 11.32 11.98 10.25 18.21 
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6.5 Supplemental Material Chapter 3 

6.5.1 Noble crayfish are more sensitive to Terbuthylazine than parthenogenetic marbled 

crayfish 

Table 6.9: Number of B-Cells/Hepathopancreas Cell regarding to concentration for noble crayfish juveniles exposed to TBA 

Sample/Conc.  Control 0.025 0.1 0.4 1.6 6.4 12.8 

1 25 80 75 67 80 66 47 

2 24 62 72 76 79 66 29 

3 26 73 62 62 70 67 34 

4 28 77 69 60 78 64 45 

5 29 70 70 66 74 80 50 

6 24 73 60 77 68 75 60 

7 23 76 77 68 76 80 46 

8 25 74 61 74 76 77 44 

9 21 64 79 79 68 74 51 

10 25 72 71 65 77 66 58 

11 26 64 78 67 68 61 40 

12 28 77 77 63 72 68 44 

13 27 61 75 64 74 62 39 

14 22 79 78 75 72 71 30 

15 23 62 65 77 63 63 27 

16 25 77 65 69 76 72 41 

17 26 61 73 67 72 67 58 

18 22 63 72 74 64 61 51 

19 21 65 70 80 65 66 29 

20 24 74 68 69 78 80 43 

21 25 77 74 67 77 75 40 

22 27 60 69 73 76 68 26 

23 22 65 60 78 75 61 32 

24 23 73 61 71 63 75 42 

25 25 63 64 76 76 61 28 

26 29 79 75 67 70 71 43 

27 28 64 71 70 60 61 43 

28 22 71 68 65 60 64 51 

29 22 71 73 69 79 72 56 

30 21 69 64 63 61 75 29 

Average 24.60 69.87 69.87 69.93 71.57 68.97 41.87 
 

 

 

 



Appendix 

 

129 
 

6.5.2 Effects of Diclofenac on the embryonic development of freshwater crayfish 

Table 6.10: Number of B-Cells/Hepathopancreas Cell regarding to concentration for noble crayfish juveniles exposed to 
Diclofenac 

Sample/Conc.  Control 0.01 0.04 0.16 0.64 2.56 10.24 40.96 

1 25 24 26 30 25 34 32 47 

2 24 24 31 25 28 37 47 29 

3 26 27 25 27 29 33 32 34 

4 28 28 31 27 28 38 37 45 

5 29 29 28 26 29 32 38 50 

6 24 27 30 28 31 34 36 60 

7 23 25 31 29 31 36 41 46 

8 25 25 30 29 26 35 44 44 

9 21 26 30 29 28 37 34 51 

10 25 24 27 25 27 30 48 58 

11 26 26 29 28 27 29 38 40 

12 28 26 26 31 26 29 45 44 

13 27 30 28 26 24 39 42 39 

14 22 26 24 30 28 36 47 30 

15 23 27 29 31 26 35 38 27 

16 25 27 26 24 30 32 38 41 

17 26 25 30 31 27 29 34 58 

18 22 28 31 27 27 26 45 51 

19 21 24 26 30 29 37 37 29 

20 24 29 29 26 26 29 37 43 

21 25 28 25 29 31 29 43 40 

22 27 29 25 31 26 38 33 26 

23 22 26 29 31 27 31 34 32 

24 23 27 30 30 31 28 48 42 

25 25 30 31 31 24 33 34 28 

26 29 24 27 27 31 30 34 43 

27 28 27 25 28 28 29 39 43 

28 22 30 30 25 31 33 38 51 

29 22 29 27 25 31 27 43 56 

30 21 26 31 27 27 29 42 29 

Average 24.60 26.77 28.23 28.10 27.97 32.47 39.27 41.87 
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Table 6.11: Weights of hatched noble crayfish exposed to different Concentrations of TBA 

Animal/Conc. 40.96 10.24 2.56 0.64 0.16 0.04 0.01 LSM 0 

1 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.02 

2 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.02 

3 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 

4 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.02 

5 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.02 

6 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 

7 0.02  0.02 0.03 0.02 0.02 0.02 0.02 0.03 

8 0.02     0.03 0.03 0.02 0.03 

9      0.02 0.03 0.02 0.03 

10      0.03 0.03 0.03 0.02 

11      0.03 0.03 0.03  
12      0.03 0.03   
13      0.03    

Average 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 
 

Table 6.12: Weights of hatched marbled crayfish exposed to different Concentrations of TBA 

Animal/Conc. 2.56 0.64 0.16 0.04 0.01 0 

1 0.0038 0.0046 0.0044 0.003 0.0037 0.0043 

2 0.004  0.0038 0.0038  0.004 

3 0.0039  0.0033   0.0047 

4 0.0052     0.0039 

5      0.0038 

6      0.005 

7      0.0038 

Average 0.0042 0.0046 0.0038 0.0034 0.0037 0.0042 
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6.6 Supplemental Material Chapter 4 

6.6.1 Agrolab study site Data  
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Table 6.13: Number of B-Cells/Hepathopancreas Cell of noble crayfish juveniles exposed to different areas near a STP influence 

Sample/Group A B C D 

1 26 40 40 48 

2 17 43 47 38 

3 18 54 53 49 

4 24 54 45 42 

5 17 51 43 41 

6 25 52 37 46 

7 18 44 40 35 

8 17 47 41 41 

9 23 49 42 38 

10 20 51 44 52 

11 19 40 54 45 

12 17 48 48 43 

13 24 44 47 50 

14 17 36 37 53 

15 17 44 49 53 

16 19 39 38 51 

17 20 50 51 51 

18 24 54 38 44 

19 18 50 48 45 

20 20 35 50 38 

21 19 37 55 34 

22 19 50 36 47 

23 23 37 46 50 

24 21 49 39 51 

25 26 52 40 36 

26 19 35 50 44 

27 19 46 54 39 

28 25 40 48 50 

29 24 44 36 52 

30 18 38 44 36 

31 16 50 43 46 

32 20 52 51 44 

33 22 38 48 46 

34 25 35 50 42 

35 26 37 45 48 

36 24 37 48 45 

37 21 35 40 49 

38 24 44 50 49 

39 24 44 43 47 

40 21 41 44 47 
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Table 6.14: continuation of: Number of B-Cells/Hepathopancreas Cell of noble crayfish juveniles exposed to different areas 
near a STP influence 

Sample/Group A B C D 

41 23 41 37 50 

42 25 48 40 51 

43 22 47 49 45 

44 21 39 53 38 

45 19 39 49 37 

46 22 51 49 34 

47 16 54 49 45 

48 24 35 55 47 

49 26 42 39 40 

50 21 35 43 44 

51 18 35 48 37 

52 24 39 41 53 

53 19 48 53 47 

54 22 52 36 37 

55 23 46 54 34 

56 25 50 46 50 

57 16 42 38 46 

58 25 43 45 48 

59 26 54 38 35 

60 26 49 47 52 

Average 20.90 44.15 45.05 45.13 

SD 3.08 6.23 5.32 5.27 
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